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Abstract

Storage codes are used to ensure reliable storage of data in distributed systems. Here we
consider functional repair codes, where individual storage nodes that fail may be repaired
efficiently and the ability to recover original data and to further repair failed nodes is pre-
served. There are two predominant approaches to repair codes: a coding theoretic approach
and a vector space approach. We explore the relationship between the two and frame the
later in terms of projective geometry. We find that many of the constructions proposed in
the literature can be seen to arise from natural and well-studied geometric objects, and that
this perspective gives a framework that provides opportunities for generalisations and new
constructions that can lead to greater flexibility in trade-offs between various desirable prop-
erties. We also frame the cut-set bound obtained from network coding in terms of projective
geometry.

We explore the notion of strictly functional repair codes, for which there exist nodes that
cannot be replaced exactly. Currently only one known example is given in the literature,
due to Hollmann and Poh. We examine this phenomenon from a projective geometry point
of view, and discuss how strict functionality can arise.

Finally, we consider the issue that the view of a repair code as a collection of sets of
vector/projective subspaces is recursive in nature and makes it hard to visualise what a
collection of nodes looks like and how one might approach a construction. Here we provide
another view of using directed graphs that gives us non-recursive criteria for determining
whether a family of collections of subspaces constitutes a function, exact, or strictly functional
repair code, which may be of use in searching for new codes with desirable properties.

1 Introduction

The growth of data and an increasing reliance on digital information have led to much research
into ensuring that data can be stored reliably. One predominant solution is the use of storage
codes for distributed storage systems: a database is coded and stored in multiple nodes (servers)
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in such a way that if a number of nodes fail, the data can still be recovered from the functioning
nodes. One technique used in practice (for example, RAID [15], Total Recall [2]) is that of erasure
coding: for instance, MDS codes such as the Reed-Solomon code ([12]) can be used to ensure that
any number of node failures up to a certain threshold does not impede the recovery of the entire
database. However, many distributed storage systems also require additional resilience properties.
In particular, we may want to mitigate node failures: if a node should fail, we would like to
repair it using information in some of the functioning nodes so that the the recovery property of
the system still holds. Clearly one could do that by simply recovering the entire database and
re-encoding it. This involves a sometimes unacceptable overhead in storage and communication.
Much work has been done to minimise the amount of data to be stored and the amount of data
to be transmitted for repair. Using techniques from network coding, Dimakis et al. ([3]) showed
that one could significantly reduce the amount of data to be communicated for repair and showed
that there is a tradeoff between storage and repair efficiency. Since then much work has been done
on modelling and constructing efficient repair codes. Here we consider two strands of this work.

In [16], Rashmi et al. proposed a product-matrix framework for repair codes. This is an essentially
coding theoretic approach, where the database is treated as messages that are encoded using
a generator matrix. The resulting codewords are then stored in individual nodes. Using this
framework, repair codes can be constructed with parameters that sit on various points on the
storage-repair tradeoff curve. On the other hand, in [8], Hollmann and Poh viewed a repair code
as a collection of sets of subspaces of a vector space. Recovery corresponds to generating the vector
space while repair corresponds to generating a subspace. In this paper (Section 2.3) we explore
the relationship between these two models and motivate the interpretation of the vector space
model in terms of projective geometry. We will see that many constructions arise naturally from
looking at repair codes from a projective geometric point of view (Section 3) and these include
the constructions in [8, 17]. We also frame a special case of the cut-set bound that Dimakis et
al. obtained from network coding technique ([3]) in terms of projective spaces. This proves to be
relatively straight forward compared to the original proof.

There are broadly speaking two types of repair. In exact repair, if a node fails then the new
node constructs exactly the same symbols that the failed node stored. In functional repair, the
new node does not necessarily contain the same symbols as the failed node, but the set of nodes
after repair should remain a repair code: one should still be able to recover the original database,
and future repair should be possible. We will call a functional repair code that does not admit
exact repair a strictly functional repair code. In this paper we will also clarify what exact and
functional repair means. One interesting question is whether there exists strictly functional repair
codes. In Section 3 we see that there are repair codes that can be both functional and exact, but
in [8] there is a construction that is strictly functional. This appears to be the only example in
the literature so far. Another aim of this paper (Sections 3.2.2 and 4) is to examine this structure
from a projective geometry point of view and to see if it can be generalised. We give another
example of a strictly functional repair code which arises from a familiar structure in projective
planes (Section 3.1.1).

The study of the strictly functional construction from [8] is also motivated by the following: the
view of a repair code as a collection of sets of vector/projective subspaces is recursive in nature:
one must be able to derive a new subspace from an “admissible” set, and the new subspace,
together with all but one of the subspaces from the “admissible” set must again be “admissible”.
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This models the repair property, insisting that future repairs must be possible. However, this
recursive nature makes it hard to visualise what a collection of admissible sets look like: it is
hard to discern the “global view” of the whole set of nodes from the “local view” of individual
node repairs. In the construction of this strictly functional repair code, a description is given that
uses symmetry to bypass the recursiveness of the definition. This naturally leads to the question
of whether this can be generalised, and also motivates another view using directed graphs. We
discuss exact and functional repairs in terms of the properties of these graphs in Section 6.

We will make these aims more precise when we introduce notation. We would like to note that
constructing new efficient storage codes is not the primary focus of this work, even though many
objects in projective geometry appears to offer good repair as well as flexibility in terms of resilience
and trade-offs between locality and repair. We intend rather to clarify the definition and properties
of functional repair codes, and to consider their possible relationship with other combinatorial
objects.

The structure of this paper is as follows: we will give definitions and introduce notation in Section
2, and consider some motivation for phrasing things in terms of projective geometry (Section 2.3).
In Section 3 we examine functional repair codes arising from projective geometry objects, and
study in further detail the strictly functional repair code of [8] in Sections 4 and 5. In Section 6
we consider functional repair codes as digraphs, and in Section 7 we discuss further work.

2 Definitions and basic properties

An (m;n, k, r, α, β)-functional repair code stores m information symbols from some finite alphabet
F, encoded across n storage nodes. Each storage node can hold α symbols. The following properties
hold:

(I) (Recovery)

The original information can be recovered from the data stored on k nodes (the recovery
set).

(II) (Repair)

If a storage node fails then a newcomer node contacts some set of r surviving nodes (the
repair set) and downloads β symbols from each of these r nodes. From these symbols the
newcomer node constructs and stores α symbols in such a way that (I) holds and (II) holds
if another node fails.

We note that there is a dichotomy in the definition of the repair set: in some work (for example,
[3, 16]) it is stipulated that the repair set is any set of r surviving nodes, while in others (for
example, [8, 21]) it is only required that there exists some r nodes to form the repair set. Similarly
for the recovery set. We will continue this discussion after Definition 2.2.

In exact repair, if a node fails then the newcomer node constructs exactly the same symbols
that the failed node stored, while in functional repair the newcomer node does not necessarily
contain the same symbols as the failed node, but the set of n nodes after repair should remain an
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(m;n, k, r, α, β)-functional repair code. A functional repair code that does not admit exact repair
is a strictly functional repair code. (We will make these definitions more precise in what follows.)
The focus of this paper is functional repair.

In [8] and various subsequent work, a functional repair code is viewed as a collection of sets of
subspaces of an m-dimensional vector space over a finite field Fq. The underlying storage codes
work as follows:

• For i with 0 ≤ i ≤ n− 1, the ith node is assigned a vector space represented by a specified
basis {vi0,vi, . . . ,viα−1}.

• To store a message x = (x0, x1, . . . , xm−1) ∈ Fmq , each node i with 0 ≤ i ≤ n − 1 stores the
α scalar values {x · vi0,x · vi, . . . ,x · viα−1}.

• If the vector (1, 0, . . . , 0) is in the span of a set of vectors {u0, . . . ,ut−1}, then the values
{x · u0, . . . ,x · ut−1} can be used to recover x0. For, if (1, 0, . . . , 0) =

∑t−1
i=0 aiui for ai ∈ Fq,

then x0 =
∑t−1

i=0 aix · ui. If the vectors {u0, . . . ,ut−1} span Fmq then the entire message x
can similarly be recovered from these values.

The properties of the storage code are hence determined by the relationship between the subspaces
that correspond to the nodes, in particular, the spans and the intersections of these subspaces. The
projective space PG(m− 1, q) provides a very natural setting for studying spans and intersections
in Fmq . It can make the relationship between spaces easier to visualise and, furthermore, many
natural geometric structures in PG(m − 1, q) have well-understood span/intersection properties
that can be useful in constructing storage codes. In what follows we will translate the vector-
space definitions of [8, Definitions 3.1, 3.2] into the language of projective spaces. We will see
that this provides new insight into existing constructions of repair codes, such as [8, 17], as well
as suggesting useful frameworks for new construction of such codes.

Definition 2.1 ((r, β)-repair). Let Σ = PG(m− 1, q) be an (m− 1)-dimensional projective space
over the finite field Fq. We say that we can obtain a subspace U ′ of Σ from a set U of subspaces
of Σ by (r, β)-repair if there is an r-subset {Ui1 , . . . , Uir} in U such that there exists a (β − 1)-
dimensional subspace Wij ⊆ Uij for each ij such that U ′ ⊆ 〈Wi1 , . . . ,Wir〉.

Definition 2.2 (Functional repair codes). Let Σ = PG(m − 1, q) and let A be a collection of
(n− 1)-sets U of (α− 1)-dimensional subspaces of Σ such that:

(A) (Recovery)

For each set U ∈ A there is a k-subset {Ui1 , . . . , Uik} of the subspaces in U whose span is all
of Σ.

(B) (Repair)

Given any (n−1)-set U = {U1, . . . , Un−1} in A, there exists an (α−1)-dimensional subspace
Un ⊂ Σ that can be obtained from U by (r, β)-repair, such that for every i = 1, . . . n − 1,
U ∪ {Un} \ {Ui} is again in A.
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We will call (Σ = PG(m− 1, q),A) an (m;n, k, r, α, β)-functional repair code (or (m;n, k, r, α, β)-
FRC for convenience).

Here A corresponds to all possible sets of n−1 subspaces that belong to the nodes remaining after
a single node has failed. The repair property ensures that there is always a suitable subspace that
can be constructed by (r, β)-repair from these nodes in order to construct a replacement for the
node that has failed. Clearly here we require that there exists some recovery set and some repair
set, although in many of the constructions we describe in Section 3, repair and recovery can be
effected by arbitrary sets. We will clarify each case as we go along.

To avoid triviality we assume that m,n ≥ 2, 1 ≤ k < n, k ≤ r ≤ n − 1, 1 ≤ α ≤ m − 1, and
1 ≤ β ≤ α.

Definition 2.3. Let (Σ = PG(m−1, q),A) be an (m;n, k, r, α, β)-functional repair code. An n-set
{U1, . . . , Un} of (α−1)-dimensional subspaces of Σ with the property that {U1, . . . , Un}\{Uj} ∈ A
for all j ∈ {1, . . . , n} is said to be repairable.

It is the repairable sets corresponding to (Σ,A) that can be used as storage codes; if any node
fails, the repair property then ensures that the resulting (n− 1)-set permits a new repairable set
to be obtained through (r, β)-repair. Now we define exact and strictly functional repairs:

Definition 2.4 (Exact repair). Let (Σ = PG(m−1, q),A) be an (m;n, k, r, α, β)-functional repair
code. We say that (Σ,A) is an exact repair code if for any repairable set {U1, . . . , Un} we have
the additional property that Ui can be obtained by (r, β)-repair from {U1, . . . , Un} \ {Ui} for any
Ui ∈ {U1, . . . , Un}.

We observe that if (Σ,A) is an exact repair code, then any for any repairable setR = {U1, U2, . . . , Un},
the collection A′ = {R \ {Ui}|1 ≤ i ≤ n} has the property that (Σ,A′) is itself an exact repair
code.

Definition 2.5 (Strictly functional repair). Let (Σ = PG(m − 1, q),A) be an (m;n, k, r, α, β)-
functional repair code. We say that (Σ,A) is a strictly functional repair code if there exists a
repairable set {U1, . . . , Un} for which there is a Ui ∈ {U1, . . . , Un} that cannot be obtained from
{U1, . . . , Un} \ {Ui} by (r, β)-repair.

In other words, (Σ,A) is a strictly functional repair code if there is some subspace in a repairable
set such that exact repair from the remaining n− 1 subspaces of the set is not possible. For these
definitions we are focussing on the subspaces stored by the nodes, rather than explicitly referring
to bases for these spaces. This is due to the fact that the elements stored by a node allow them
to recover any desired element in the corresponding space, and this ability does not depend on
the choice of basis used to describe the space. We note that in [17], the term functional repair is
used in a scenario in which the failed node and the repaired node correspond to different bases of
the same space. However, this would satisfy Defintion 2.4 for exact repair, and hence would not
represent a strictly functional repair code according to our usage of terminology in this paper. We
will later discuss two examples of codes that do satisfy our stronger definition of strictly functional
repair: one from [8] (Section 4) and a new example that arises almost immediately from phrasing
the definition in terms of projective geometry (Section 3.1.1).
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2.1 Geometric interpretation of the cut-set bound

In [3], the cut-set bound of network coding is used to establish an upper bound on the the number
of information symbols m that can be stored in an (m;n, k, r, α, β)-functional repair code. Here
we interpret this bound in terms of finite projective geometry for the case n = r + 1, β = 1.

Theorem 2.6. Let (Σ = PG(m− 1, q),A) be a (m; r + 1, k, r, α, 1)-functional repair code. Then

m ≤
k∑

i=1

min(α, (r − k) + i).

2

Proof. Each node i corresponds to a subspace Ui of Σ of dimension α − 1, and any k of them
span PG(m − 1, q). In particular, the spaces corresponding to the first k nodes span Σ, i.e.
〈U1, U2, . . . , Uk〉 = Σ. This implies that m− 1 is at most kα− 1.

Consider a repair of node 1. The repair property implies it is possible to choose one point P 1
j

from each node j with 2 ≤ j ≤ r + 1 such that there is an (α − 1)-dimensional subspace U ′1
contained in their span with {U ′1, U2, . . . , Ur+1} repairable. Since we require 〈U ′1, U2, . . . , Uk〉 = Σ,
it follows that 〈U2, U3, . . . , Uk, P

1
k+1, P

1
k+2, . . . , P

1
r+1〉 = Σ. This implies that m − 1 is at most

(k − 1)α− 1 + (r + 1− k).

We now consider a repair of node 2. There exists a point P 2
j in each node with j 6= 2 (including

P 2
1 in U ′1) such that there is a (α − 1)-dimensional subspace U ′2 contained in their span with
{U ′1, U ′2, . . . , Ur+1} repairable, and 〈U3, . . . , Uk, P

1
k+1, P

1
k+2, . . . , P

1
r+1, P

2
1 , P

2
k+1, P

2
k+2, . . . , P

2
r+1〉 = Σ.

This implies that m− 1 is at most (k − 2)α− 1 + (r + 1− k) + (r + 2− k).

We can repeat this process, continuing to replace each Ui in the set by a collection of repair points
whose inclusion ensures that the replacment U ′i will be contained in the relevant span. After repair
of node i we have the result that m − 1 is at most (k − i)α − 1 +

∑i
j=1(r + j − k). The bound

on m− 1 is lowered at each step until either we reach a point at which the number of additional
points we have to add (r+ i− k) is greater than α, or we have replaced replaced all of U1, . . . , Uk
with the relevant repair sets of points. At this point we stop, and we have

m− 1 ≤
(

k∑

j=1

min(α, r + j − k)

)
− 1,

so

m ≤
k∑

j=1

min(α, r + j − k),

=
k−1∑

i=0

min(α, r − i).
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Generalising to β > 1 is entirely straightforward: in each step of the proof we take β points per
node rather than 1 point. This approach would also work in the n > r + 1 case if we make the
assumption that any set of r nodes can be used for repair. This is the assumption made in [3, 16].

2.2 Performance measures for FRCs

In the definitions of Section 2 there is no stipulation on the size of A, nor on the number of
(α−1)-dimensional subspaces in an (m;n, k, r, α, β)-functional repair code. Let N be the number
of distinct (α − 1)-dimensional subspaces used in A. We will consider bounds on the value of N
in Section 6.

The commonly-studied measures of efficiency of an FRC are the storage rate Rs = m
nα

(the number
of message symbols divided by the total number of stored symbols)and the repair rate Rr = α

rβ

(the number of symbols required for the repaired node divided by the number of symbols requested
in order to facilitate repair). The value rβ is called the repair bandwidth. Another performance
metric is locality - the number of nodes to be contacted for repair, given by r.

Other performance metrics that we will not describe formally include availability, which is the
number of disjoint repair sets for a node. Recent interest in this includes [19] where fractional
repetition codes are used to construct codes with high availability and nodes are partitioned into
clusters, each cluster providing a set of helper nodes to repair a failed node, and [25], where codes
with different repair bandwidth for repair within clusters and across clusters are proposed.

The ability to repair multiple failures is also obviously of interest, and this may also be studied
under different models, for example, [29, 30] study centralised repair (where repair is carried out in
one location) and cooperative repair (where failed nodes may communicate) for multiple failures.

Much existing literature seeks to construct codes that optimise one or more of these measures
([3, 16, 23]). This is not the primary motivation of this paper, although we will examine the
trade-offs that arise from the various possible construction choices we discuss. We will see that
most geometrical constructions seem to have good repair rates but less than ideal storage rates;
some of them offer a trade-off between repair rate and locality.

2.3 The product-matrix model

The other widely used model of (m;n, k, r, α, β)-functional repair codes is the product-matrix
model [16] mentioned in the Introduction. In this model, the m information symbols are formatted
into an r×α message matrix, and the encoding process involves multiplication by an n×r encoding
matrix. The resulting n × α matrix gives the symbols stored on each of the n nodes: row i of
the matrix denotes the α symbols stored in node i. This can be viewed as an instantiation of the
vector space model of [8]: if the entries in the ith row of the encoding matrix are Ei1, Ei2, . . . Eir,
then the ith node corresponds to the subspace spanned by the vectors v0,v1, . . . ,vα−1, where vj

has the values Ei1, Ei2, . . . , Eir in positions jr+ 1 through jr+ r and 0 in the remaining positions.
If a length m message is obtained by concatenating the columns of the message matrix, then the
resulting symbols stored by each node according to this vector space scheme are precisely those
that would be stored using the product-matrix model.
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2.4 Subpacketisation/vectorisation

We now consider a well-known example of an FRC that can be generated using the the product-
matrix model with α = 1, together with the application of a technique proposed by Shanmugam
et al. for improving the repair bandwidth [24]. We will see that this example can be described
very naturally in the projective geometry setting.

Example 2.7. [Scalar MDS code] A file x0 . . . xm−1 consisting of m symbols belonging to the field
Fps , p a prime power and s > 1, is stored across n storage nodes using an [n,m]-MDS code over
Fps . (This is referred to as a scalar MDS code.) Each storage node would then store exactly α = 1
symbol of Fps . Now, if one storage node should fail, a repair would involve contacting r = m
nodes, each contributing β = 1 symbol. Altogether it would take rβ = m symbols to repair one
symbol.

Following the approach of Definition 2.2, the scalar MDS code construction translates to a collec-
tion of n points P0, . . . , Pn−1 in Σ = PG(m− 1, ps), every m of which span Σ; this is precisely an
n-arc in PG(m− 1, ps). Any failed node can only be obtained by a (m, 1)-repair, since any given
point of the arc is not contained in the space spanned by m− 1 further points of the arc. This is
an (m;n,m,m, 1, 1)-functional repair code with storage rate Rs = m

n
and repair rate Rr = 1

m
.

2

In [24] Shanmugam et al. proposed a “vectorisation” of MDS codes over fields of prime power in
order to obtain a better repair bandwidth. “Vectorisation” or “subpacketisation” involves treating
each symbol xi ∈ Fps as s symbols of Fp. As a consequence, instead of having to downloading all
the symbols in each node, one may be able to effect repair by downloading fewer symbols (from
perhaps more nodes), resulting in a reduction of repair bandwidth.

To explore the vectorisation process more explicitly, let f(x) = a0 + a1x+ · · ·+ as−1x
s−1 +xs be a

primitive polynomial of degree s over Fp and let ζ be a root of f(x). Then every element b of Fps can
be written as b = b0+b1ζ+· · ·+bs−1ζ

s−1, bi ∈ Fp. Using this correspondence, b ∈ Fps can be viewed
as (b0, b1, . . . , bs−1) ∈ Fsp. This is the basis of the technique of field reduction used to construct
Desarguesian spreads of PG(sm− 1, p) from the points of PG(m− 1, ps) ([6, Section 4]). A point
(x0, x1, . . . , xm−1) in PG(m−1, ps), with xi ∈ Fps viewed as (xi0, x

i
1, . . . , x

i
s−1) ∈ Fsp, can be written

as the point (x0
0, x

0
1, . . . , x

0
s−1, x

1
0, x

1
1, . . . , x

1
s−1, . . . , x

m−1
0 , xm−1

1 , . . . , xm−1
s−1 ) in PG(sm − 1, p). Now,

take a point (p0, p1, . . . , pm−1) ∈ PG(m − 1, ps) and all its multiples {(p0ζ
i, p1ζ

i, . . . , pm−1ζ
i | i =

0, . . . , ps − 2}. Then the corresponding points of this set in PG(sm − 1, p) form an (s − 1)-
dimensional subspace. The set of all such (s− 1)-dimensional subspaces partitions PG(m− 1, ps)
and is a Desarguesian spread.

(The “vectorisation” process in [24] uses another map: each b ∈ Fps can be treated as a linear
transformation x 7→ bx in Fps , so b can be described as an s× s matrix acting on the basis of Fps
over Fp. Each element of the MDS code is thus replaced by its corresponding s× s matrix. This
process is equivalent to the field reduction construction of Desarguesian spreads described above.)

The “vectorised” functional repair code is now an (sm;n,m, r ≤ m, s, β)-functional repair code
for some r and β and storage rate Rs = m

n
, repair rate Rr = s

rβ
. It corresponds to a set of n

(s−1)-dimensional subspaces of PG(sm−1, p), and we can see that with more room to manoeuvre
we may be able to repair one subspace without having to use entire subspaces.
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We give a small example to illustrate this principle:

Example 2.8. Take s = 3, k = 3, n = 5, we have a 5-arc in PG(2, 8) (taking primitive element
ζ3 = ζ + 1):




1 0 0
0 1 0
0 0 1
1 1 1
1 ζ ζ2



.

This is an (m = 3;n = 5, k = 3, r = 3, α = 1, β = 1)-functional repair code with Rs = 3
5
, Rr = 1

3
.

“Vectorisation” gives 5 planes in PG(8, 2): each group of three rows are 3 points that span a plane.
We call the planes U1, . . . , U5.




1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

1 0 0 0 0 1 0 1 0
0 1 0 1 0 1 0 1 1
0 0 1 0 1 0 1 0 1




.

This is now an (m = 9;n = 5, k = 3, r = 5, α = 3, β = 2)-functional repair code. If U1 fails, one
could repair U1 by downloading the following points:

• R21 = (000 110 000), R22 = (000 011 000) from U2,

• R31 = (000 000 110), R32 = (000 000 011) from U3,

• R41 = (110 110 110), R42 = (011 011 011) from U4,

• R51 = (010 101 011) from U5 (and another one if we must have symmetry).
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Then we can get (010 000 000) = R51 + R21 + R22 + R32, (110 000 000) = R41 + R21 + R31, and
(011 000 000) = R42 +R22 +R32. This gives us U1.

In the scalar version, to repair one point (9 bits of information) we need to use three points (27
bits). The repair rate is therefore 1/3. In the “vectorised” version, to repair one subspace (27
bits) we need to use 8 points (72 bits). The repair rate is thus 3/8 > 1/3. (Or 3/7 if we don’t
mind lopsidedness.) 2

The motivation in [24] is to obtain a better repair rate, which the example illustrated. In addition,
we see that this process has a natural counterpart in projective geometry that is also intuitive.

Much work has been done further along these lines with some variations. For instance, [1] studies
the lower bound for α (the “sub-packetisation”) in MSR codes that allow “repair-by-transfer”, that
is, symbols from the remaining functioning nodes are downloaded directly without computation
during repair, and [26] provides further examples of codes reaching the lower bound for α for
different values of locality d (r in this paper). Meanwhile, [4] studies trading off repair bandwidth
for better sub-packetisation, and [18] also provides constructions for MSR codes achieving the
lower bound for α for “repair-by-transfer”.

3 Projective geometric constructions of functional repair

codes

We will examine some existing constructions and also some constructions that arise naturally from
looking at functional repair codes from a projective geometric point of view. The construction of
a vector space/projective geometric functional repair code involves choosing both the dimensions
of the spaces corresponding to the nodes, and selecting which subspaces of these dimensions to
use. The properties of the code are determined entirely by the manner in which the various
spaces intersect. The advantage of the geometric perspective is that many classical geometric
objects have nice, well-understood properties in terms of how spaces embedded in these objects
intersect. We will see that many existing constructions in the literature can be viewed as arising
from classical geometric objects in this way.

Broadly speaking, assigning low-dimension subspaces over a given field to nodes is efficient from
a storage perspective, while assigning larger spaces over the same field can allow the repair band-
width to be reduced. When spaces of dimension greater than one are used, there is the potential
for the spaces assigned to distinct nodes to have a non-trivial intersection. In what follows we
will consider separately constructions with intersecting subspaces and those with non-intersecting
subspaces. Both cases are potentially of interest: non-intersecting spaces are efficient in the sense
of avoiding direct redundancy, however there is an upper bound to how large spaces can be without
intersecting, and redundancy may be desirable for facilitating recovery and/or repair.
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3.1 Constructions using intersecting subspaces.

We begin by considering the simplest possible case for intersecting subspaces, that of lines in a
plane, then use the results obtained to suggest useful constructions in higher dimensions.

3.1.1 Dual arcs

A neat construction of an exact repair code can be obtained from three lines in a plane:

Example 3.1. [Three lines in a plane.] Any three non-concurrent lines in a plane will give an
exact repair code: let l1, l2, l3 be three non-concurrent lines in PG(2, q), and let A be the collection
of the sets of pairs of distinct lines {li, lj} ⊆ {l1, l2, l3}. Then A is an (m = 3;n = 3, k = 2, r =
2, α = 2, β = 1)-functional repair code.

We may coordinatise l1, l2, l3 as:

l1 : 〈(1, 0, 0), (0, 1, 0)〉,
l2 : 〈(0, 1, 0), (0, 0, 1)〉,
l3 : 〈(1, 0, 0), (0, 0, 1)〉.

A (2, 1)-repair for l3, for example, is 〈(1, 0, 0) ∈ l1, (0, 0, 1) ∈ l2〉.
Here the storage rate Rs = 1/2 and the repair rate is Rr = 1. 2

This example tolerates a single node failure. In order to protect against additional failures we may
desire schemes permitting more nodes. We can achieve this by generalising the idea of Example 3.1
to a larger set of lines: a dual arc in a a projective plane of order q is a set of N ≤ q + 1 lines, no
three concurrent.

Theorem 3.2. Let L be a collection of N ≥ 3 lines of a projective plane Σ such that no three of
them are concurrent. Let A be the collection of (N − 1)-tuples of distinct lines of L. Then (Σ,A)
is an (m = 3;n = N , k = 2, r = 2, α = 2, β = 1)-functional repair code that can tolerate up to
N − 2 node failures if N > 3. 2

Proof. Any subset of three nodes in L can be considered to be an exact repair code, as seen
in Example 3.1. Thus, provided two nodes survive, any failed node can be recovered by exact
repair.

Construction 3.3 (Dual arcs in a plane). Let C be a nonsingular conic in PG(2, q) with q an
odd prime power. Let L be a subset of the tangents to C with |L| = n, 3 ≤ n ≤ q + 1. Then
L is a dual arc in PG(2, q) ([6]). Let A be the collection of pairs of distinct lines of L. Then by
Theorem 3.2, we have that (Σ,A) is an (3;n, 2, 2, 2, 1)-functional repair code that can tolerate up
to n− 2 node failures (if n > 3), with storage rate Rs = 3/2n ≤ 1/2 and repair rate 1.

This construction leads naturally to a generalisation to higher dimensional spaces:

11



Example 3.4. [Planes in PG(3, q).] Consider a dual arc in PG(3, q): a set of q + 1 planes, any 4
meeting trivially. (So 2 planes meet in a line, 3 planes meet in a point.)

Take 3 of the planes π1, π2, π3. If π3 fails, repair to π′3 using lines li ∈ πi, i = 1, 2. This gives a
(m = 4; 3 ≤ n ≤ q + 1, k = 2, r = 2, α = 3, β = 2)-functional repair code.

For example,

π1 : x0 = 0,

π2 : x1 = 0,

π3 : x2 = 0.

If π3 fails, for example, it can be repaired by (2, 2)-repair using lines l1 = {(0, x1, 0, x3) | x1, x3 ∈
Fq, not both zero.} ∈ π1 and l2 = {(x0, 0, 0, x3) | x0, x3 ∈ Fq, not both zero.} ∈ π2. This gives
an (m = 4;n = 3, k = 2, r = 2, α = 3, β = 2)-functional repair code, with Rs = 4/3n = 4/9,
Rr = 3/4.

On the other hand, we could take 4 planes

π0 : x0 = 0,

π1 : x1 = 0,

π2 : x2 = 0,

π3 : x3 = 0.

If π3 fails, it can be repaired by (4, 1)-repair, using P0 = (0, 1, 0, 0) ∈ π0, P1 = (0, 0, 1, 0) ∈ π1, and
P2 = (1, 0, 0, 0) ∈ π2. This gives an (m = 4;n = 4, k = 2, r = 3, α = 3, β = 1)-functional repair
code, with Rs = 4/3n = 1/3 and better repair rate, Rr = 1. 2

There are two important features in the simple construction of Example 3.4: the ability to trade off
locality and repair bandwidth without having to make a decision during the set up, and the ability
to repair multiple failures. Before we discuss this in more detail, we give the general construction:

Construction 3.5. Take a dual arc in PG(m − 1, q): a set of q + 1 hyperplanes, any m of
which meet trivially. We may take the set of hyperplanes in a dual normal rational curve {Ht =
[1, t, t2, . . . , tm−1] : t ∈ Fq} ∪ {H∞ = [0, 0, . . . , 0, 1]}, where [z0, z1, . . . , zm−1] denotes the set of
points {(x0, x1, . . . , xm−1) | z0x0 + z1x1 + · · ·+ zm−1xm−1 = 0}.
However, to make the description of the trade-off clearer, we will take an m-subset of these
hyperplanes and coordinatise them as follows, writing ei to denote the point with a 1 in position
i and 0 everywhere else:

Hi : xi = 0, that is, Hi = 〈ej, | j ∈ {0, . . . ,m− 1} \ {i}〉.

This gives an (m;n = m, k = 2, r = dm−1
β
e, α = m − 1, β)-functional repair code with Rs = m

nα

and Rr = m−1
m−1+δ

, where δ = 0 if β|m − 1. Otherwise δ = β −∆ where ∆ = m − 1 mod β. Here
β ≥ 1 and r ≥ 2. Indeed, if we choose m odd, and β = (m− 1)/2, then we achieve both minimum
locality and optimum repair bandwidth.
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For simplicity we describe what happens if H0 fails. An (r, β)-repair can be performed, with
r = dm−1

β
e, with each of the active Hi contributing β points as follows:

H1 → e2, . . . , eβ+1,

H2 → eβ+2, . . . , e2β+1,
...

Hi → e(i−1)β+2, . . . , eiβ+1,

...

Hdm−1
β
e → e(dm−1

β
e−1)β+2, . . . , em−1, e1.

Clearly at any repair one could choose the locality r to suit the circumstances. In [17] a construc-
tion was given that also allows such a trade-off - one can choose between minimum bandwidth
repair or low locality repair, by assigning the subspaces accordingly, but this assignment has to
be determined at set up. Construction 3.5 allows the trade-off to be performed at each repair
according to the network conditions.

Construction 3.5 also tolerates multiple node failures: we can choose m ≤ n ≤ q + 1, and any
failure of up to n − 2 nodes still allows recovery and repair. It also gives high availability. For
example, when we consider the special case of Construction 3.3 using dual arcs in planes, we see
that any line can be repaired using any pair of lines, so that many sets of nodes can be used to
repair a failed node.

We note also that if we start with n < q + 1, additional nodes can be created by accessing
information from some existing nodes using the repair process. This may be useful if resilience
requirements change during the lifetime of the storage system.

3.1.2 Concurrent lines and strictly functional repair

The use of dual arcs in constructing functional repair codes is appealing due to the high availability
that results. However Example 3.1 also prompts another question: what happens if we allow sets
of nodes that correspond to concurrent lines? In Constructions 3.3 and 3.5, the spaces assigned to
nodes correspond to hyperplanes in the underlying space. This means their pairwise intersections
are well understood: any two hyperplanes of PG(m−1, q) intersect in a space of dimension m−3.
The use of the dual arcs enables us to control the way in which the spaces corresponding to larger
sets of nodes intersect: any t of them intersect in a space of dimension m − 1 − t. However, we
may wish to consider constructions where more general patterns of intersection are allowed (for
example, in order to permit more than q + 1 nodes).

In order to explore what happens when more general patterns of intersection occur, we return to
the case of lines in the plane, and consider collections of lines that include sets of three concurrent
lines. The following example shows this takes us into the realm of strictly functional repair codes:

Example 3.6. [A strictly functional repair code.] Let l1, l2, l3, l4 be four lines of Σ = PG(2, q),
q > 3, such that l1, l2, l3 are concurrent at a point P , and l4 does not pass through P . (See Figure
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Figure 1: A strictly functional repair code in PG(2, q).

P

l1
l2

l3

l4

1.) Let A be the collection of pairs of lines {li, lj}, i, j ∈ {1, 2, 3, 4}, i 6= j. Then (Σ,A) is am
(m = 3;n = 3, k = 2, r = 2, α = 2, β = 1)-functional repair code which is strictly functional repair
code.

This is because there is a set {l1, l2, l3} with {l1, l2}, {l1, l3}, {l2, l3} ∈ A but l3 cannot be obtained
from {l1, l2} by (2, 1)-repair. 2

As far as we are aware, this appears to be the only other example of a strictly functional repair
code in the literature, apart from an example due to [8] that we will discuss in Section 3.2.2.

3.1.3 Grassmann varieties

The constructions we discussed in Section 3.1.1 all involve subspaces that are hyperplanes of the
ambient space. This represents one extreme point of the possible trade-off between low repair
bandwidth and flexibility of repair at the cost of high storage. Using smaller dimensional spaces
both reduces the storage overhead, and allows for greater flexibility in terms of the size of pairwise
intersections between the spaces. In this environment where greater flexibility is possible, this
implies that the spaces must be chosen carefully to achieve the desired intersection properties.
Here we consider an example of a construction from [17]. It uses subspace codes constructed from
Grassmann varieties in vector spaces. We will describe it from the point of view of projective
geometry, in order to see how known properties of Grassman varieties make it possible to choose
collections of subsets with suitable intersections.

Let b ≥ 2 and t ≤ b be integers. Consider Πt, a t-dimensional projective subspace of PG(b, q).
Let the points X0, . . . , Xt be a basis for Πt. Write Xi = (xi0, x

i
1, . . . , x

i
b) and let MΠt be the

(t+ 1)× (b+ 1) matrix

MΠt =




X0

X1
...
Xt


 =




x0
0 x0

1 . . . x0
b

x1
0 x1

1 . . . x1
b

...
...

...
xt0 xt1 . . . xtb


 .

Write MΠt(i0, . . . , it) to denote the (t + 1) × (t + 1) submatrix of MΠt consisting of columns
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i0, . . . , it. Let V be the set of
(
b+1
t+1

)
subsets {i0, . . . , it} of {0, 1, . . . , b}, ordered in some way.

Let φ(MΠt(i0, . . . , it)) be defined as det(MΠt(i0, . . . , it)). Then φ(MΠt) is defined as a point in
PG(B, q), where B =

(
b+1
t+1

)
−1, and the jth position of φ(MΠt) is φ(MΠt(i0, . . . , it)) with {i0, . . . , it}

in the given order in V .

For example, take t = 1, b = 3. Suppose Π1 is a line in PG(3, q) with basis points (x0, x1, x2, x3),
(y0, y1, y2, y3), and

MΠ1 =

(
x0 x1 x2 x3

y0 y1 y2 y3

)
.

Then φ(MΠ1) is a point in PG(5, q) given by

(x0y1 − x1y0, x0y2 − x2y0, x0y3 − x3y0, x1y2 − x2y1, x1y3 − x3y1, x2y3 − x3y2).

We call these Grassmann coordinates (or Plücker coordinates, when t = 1). The set of points in
PG(B, q) corresponding to all the t-dimensional subspaces of PG(b, q) is called the Grassmannian,
or the Grassmann variety of the t-spaces of PG(b, q). We will concentrate on the case t = 1 here
and refer the reader to [7, Chapter 24] for more details and for the general case.

For t = 1, the lines of PG(b, q) are mapped to points of PG(B, q), B =
(
b+1

2

)
− 1. The q2 + q + 1

lines lying on a plane in PG(b, q) are mapped to a plane in PG(B, q) - the collection of such
planes in PG(B, q) are called the Greek spaces. The qb−1 + qb−2 + · · ·+ b+ 1 lines through a point
in PG(b, q) are mapped to a (b − 1)-dimensional subspace in PG(B, q) - the collection of such
subspaces are called the Latin spaces. Two Latin (Greek) spaces meet in at most one point, and
a Latin and a Greek space meet in either a line or the empty set. If there are three distinct Latin
(Greek) spaces π, π′, π′′ such that their pairwise intersections are distinct points, then any other
Latin (Greek) space π̄ having distinct points in common with π and π′ will also has a point in
common with π′′. These properties allow the construction of the functional repair codes described
in [17].

Construction 3.7 (Grassman variety construction [17]). The storage nodes V0, . . . , Vn−1 are
associated with points P0, . . . , Pn−1 in PG(b, q). Each point Pi can be associated with a collection
of lines through that point, which, in turn, gives a (b− 1)-dimensional subspace Mi in PG(B, q).
The recovery and repair properties then depend on how the points Pi are chosen: every b of the
Mi should span PG(B, q), and if an Mi should fail, one should be able to obtain it by some (r, β)-
repair. In [17], it is shown that this can be a (b, 1)-repair or a (c, b)-repair for any c|b. This gives
an (m = B + 1;n, k = b, r = b, α = b, β = 1)-functional repair code (or an (m = B + 1;n, k =
b, r = c, α = b, β = b)-functional repair code for any c|b), where B =

(
b+1
t+1

)
− 1, t ≤ b.

Consider again the example with t = 1, b = 3. One could take n ≥ 4 points in PG(3, q) such that
no 4 points lie in a plane (an n-arc). The corresponding Grassmannian would then consist of n
planes in PG(5, q) with the property that every pair of planes meet in a point, and for any plane,
the points of intersection with the other n− 1 planes form an (n− 1)-arc on the plane. It is then
clear that any three planes would span PG(5, q), while any plane can be obtained by (3, 1)-repair.
This gives a repair rate of 1, and a storage rate of 2

n
≤ 1

2
.
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3.1.4 Segre varieties

Another class of varieties having subspaces with specific intersection properties are the Segre
varieties. These can also be used to construct functional repair codes with intersecting subspaces.
It gives storage rate Rs = 1

2
, and has some restrictive recovery properties, but may still be of some

interest.

A Segre variety SVs,t in PG((s+ 1)(t+ 1)− 1, q) is defined as follows:

Let St be a t-dimensional projective space PG(t, q) and Ss be an s-dimensional projective space
PG(s, q). Then

SVs,t = {(y0z0, y0z1, . . . , y0zs; y1z0, y1z1, . . . , y1zs; . . . ; ytz0, ytz1, . . . , ytzs) |
(y0, y1, . . . , yt) ∈ St, (z0, z1, . . . , zs) ∈ Ss}.

SVs,t consists of two opposite systems of subspaces Σ1, Σ2: Σ1 consists of qs + qs−1 + · · ·+ q + 1
mutually skew t-dimensional subspaces, and Σ2 consists of qt + qt−1 + · · · + q + 1 mutually skew
s-dimensional subspaces. Each subspace in Σ1 meets a subspace in Σ2 in exactly one point.

Example 3.8. Suppose s = t = 1. Then SV1,1 is a hyperbolic quadric in PG(3, q) which consists
of (q + 1)2 points lying on 2(q + 1) lines. These lines form the two opposite systems of subspaces,
each consisting of q+1 mutually skew lines. If we take two lines from each system, then if one line
fails it can always be repaired by (2, 1)-repair from the two lines from the opposite system. For
recovery, however, we must have k = 2 lines from the same system. The collection of 3-subsets of
these 4 lines gives an (m = 4;n = 4, k = 2, r = 2, α = 2, β = 1)- functional repair code (with the
possibility of adding more nodes by the repair process), with Rs = 1

2
and Rr = 1.

This example illustrates the importance of the assumption of arbitrary recovery and repair sets
in the cut-set bound: Theorem 2.6 says that m ≤ 3 for (k, rα, β) = (2, 2, 2, 1). Here we achieve
m = 4, but the pairs of lines that constitute a recovery set are more restrictive. 2

This can be generalised to SV t,t, t ≥ 1: take t + 1 t-dimensional subspace from Σ1, and t + 1
t-dimensional subspaces from Σ2. Any one subspace may be obtained by (t + 1, 1)-repair from
the t + 1 subspaces in the opposite system. For recovery, as before, we must have k = t + 1
subspaces from the same system. The collection of (2t+ 1)-subsets of these 2t+ 2 subspaces gives
an (m = (t+ 1)2;n = 2(t+ 1), k = t+ 1, r = t+ 1, α = t+ 1, β = 1)- functional repair code (again,
with the possibility of adding more nodes by the repair process), with Rs = 1

2
and Rr = 1.

3.2 Constructions using non-intersecting subspaces.

3.2.1 Spreads and partial spreads

Another natural object to look at when one considers projective space constructions is spreads
and partial spreads.

In [8, Example 2.1] an (m = 4;n = 4, k = 2, r = 3, α = 2, β = 1)-functional repair code is
constructed using four mutually skew lines in PG(3, 2). Here we show that the construction works
over Fq for any q ≥ 2. We describe this construction as elements from a spread in PG(3, q), q ≥ 2.
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Theorem 3.9. Let S be a regular spread in PG(3, q). Let l1, l2, l3 be three lines of S and let R
be the (unique) regulus containing them. Let l4 ∈ S \ R. Then li4 can be obtained from li1 , li2 ,
li3 by (3, 1)-repair, {i1, i2, i3, i4} = {1, 2, 3, 4}. 2

Proof. It is clear that any three of l1, . . . , l4 are contained in a regulus that does not contained
the fourth line, so without loss of generality it suffices to prove that l4 can be obtained from l1,
l2, l3 by (3, 1)-repair.

Let Q1 be any point on l4. Let l5 be the transversal through Q1 to l2, l3 - this line exists and is
unique. Let P2 = l5 ∩ l2 and P3 = l5 ∩ l3.

Now consider {l1, l3, l4}. There is a unique regulus containing them but not l2. Let l6 be the
transversal to them through P3. Let P1 = l6 ∩ l1 and Q2 = l6 ∩ l4. (We know that Q1 6= Q2 since
otherwise l5 = l6 and l6 meets all four lines, which means all four lines are in a regulus.)

Now consider the space spanned by P1, P2, Q1, Q2, π = 〈P1, P2, Q1, Q2〉. Since P2Q1∩P1Q2 = P3,
π is a plane. So P1P2 and l4 are both lines in π and therefore P1P2 meets l4 in a point Q3. Hence
l4 ⊆ 〈P1 ∈ l1, P2 ∈ l2, P3 ∈ l3〉 and thus is obtained from l1, l2, l3 by (3, 1)-repair.

Construction 3.10. [8, Example 2.1] The collection of pairs of distinct lines from {l1, l2, l3, l4}
forms an (m = 4;n = 4, k = 2, r = 3, α = 2, β = 1)-functional repair code which has Rs = 1

2
and

Rr = 2
3
.

For example, we may choose l1, l2, l3 to be

l1 = 〈(1, 0, 0, 0), (0, 0, 1, 1)〉,
l2 = 〈(0, 1, 0, 0), (1, 0, 0, 1)〉,
l3 = 〈(0, 0, 1, 0), (1, 1, 0, 0)〉.

These are lines on the quadric/regulus

x0x2 − x0x3 − x1x2 − x2x3 + x2
3 = 0.

(The other lines of the regulus are 〈(1, 0, y, 1), (1, y, 0, 0)〉.)
We can take l4 to be 〈(0, 0, 0, 1), (0, 1, 1, 0)〉, which does not belong to this regulus.

A natural generalisation of such a construction would be to take planes in spreads in PG(5, q).
Indeed, in Section 2.3 a construction is given using elements of an (s−1)-spread in PG(sm−1, q).
In [9, 10, 13, 14], regular t-spreads in PG(m−1, q) are used to give (m; k ≤ n ≤ 2m−1

2t+1−1
, k = m

α
, r =

2, α = t + 1, β = α)-functional repair codes. These functional repair codes have the additional
property of allowing repairs of multiple node failures simultaneously. For example, in [14], up
to n−1

2
failed nodes can be repaired simultaneously. This follows from the property of regular

spreads, where one can always choose two spread elements that span a subspace that contains a
third given element.

These elements are subsets of a system of subspaces in a Segre varieties. Hence it is also natural
to consider the generalisation to subspaces on a Segre varieties. In contrast to the constructions
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in Section 3.1.4 where elements are taken from both systems of subspaces of a Segre variety, here
we only take subspaces from one system of subspaces, and these are mutually skew. Consider
again an SVs,t as described in Section 3.1.4. For every point in St, there is a corresponding s-
dimensional subspace belonging to Σ2 in SVs,t. Take a t′-dimensional subspace V ′ of PG(t, q),
t′ ≤ t, and consider Σ′, the s-dimensional subspaces contained in SVs,t corresponding to the points
of V ′. Then, any subspace W in Σ′ can be obtained by (2, s+ 1)-repair from two other subspaces
in Σ′: suppose W corresponds to the point P ∈ V ′, pick a point P ′ ∈ V ′ and another point
P ′′ ∈ V ′ collinear with P and P ′. Then the subspaces in Σ′ corresponding to P ′ and P ′′ will span

a subspace containing W . Let n = qt
′+1−1
q−1

. The collection of (n − 1)-subsets of s-dimensional

subspaces from Σ′ gives an (m = (s + 1)(t + 1);n, k = t + 1, r = 2, α = s + 1, β = α)-functional
repair code.

3.2.2 Focal spreads

Let Σ2t−1 = PG(2t − 1, q), t > 1, and let St be a (t − 1)-spread in Σ2t−1. Let L be an element
of St. Let Σt+d−1, t > d, be a (t + d − 1)-dimensional subspace of Σ2t−1 that contains L. Then
{L} ∪ {M ′ = M ∩ Σt+d−1 | M ∈ St \ {L}} is a focal spread consisting of the focus L, and the
(d − 1)-dimensional subspaces M ′ partitioning the points of Σt+d−1 not in L. Focal spreads are
described in greater details in [11].

In [8] an (m = 5;n = 4, k = 3, r = 3, α = 2, β = 1)-functional repair code was constructed using
focal spreads with t = 3, d = 2: a 2-spread in PG(5, 2), intersected by a 4-space, the focus being
a plane, and there are 8 lines partitioning the points not in the plane. The storage code consists
the collection of 3-subsets of these 8 lines.

This can clearly be generalised. For example, using t = 4, d = 2, we have the storage code
being 16 lines partitioning the set of points of a 5-dimensional space that are not contained in the
focus, which is a 3-dimensional space. A computer search shows that a line cannot be obtained
by (3, 1)-repair but can be obtained by (4, 1)-repair, making this an (m = 6;n = 16; k = 3, r =
4, α = 2, β = 1)-functional repair code.

However, the example in [8] turns out to be strictly functional, while our generalisation allows
both functional and exact repair. Indeed, this appears to be the only strictly functional repair
code that is known (apart from Example 3.6). In the next section we prove this property and
examine the structure further.

4 Anatomy of a strictly functional repair code

In [8, Example 2.2 and Section VI], an (m = 5;n = 4, k = 3, r = 3, α = 2, β = 1)-functional repair
code was given which turns out to be a strictly functional repair code. This is constructed using
focal spreads and is described in Section 3.2.2. Here we prove that it is strictly functional, and
consider whether it can be generalised.

Firstly we write the (m = 5;n = 4, k = 3, r = 3, α = 2, β = 1)-functional repair code according to
Definition 2.2:
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Definition 4.1. Let Σ = PG(4, q) and let A be a set of 3-tuples U of lines such that

(a) (Recovery) For every U ∈ A, the 3 lines in U span PG(4, q).

(b) (Repair) For each U = {U1, U2, U3} there is a point Pi on Ui, i = 1, 2, 3, such that there is
another line U4 ⊆ 〈P1, P2, P3〉, and U ′i = U ∪ {U4} \ {Ui}, i = 1, 2, 3, again belongs to A.

We will give a brief description of this construction in terms of projective spaces. We will describe
the lines using the correspondence between PG(1, 23) and the spread in PG(5, 2) in the manner
described in Section 2.3.

Write F8 as {0, ζ i : i = 0, . . . , 6, ζ3 = ζ + 1}. If a = a0 + a1ζ + a2ζ
2 and b = b0 + b1ζ + b2ζ

2

then (a, b) ∈ PG(1, 23) can be thought of as a point (a0, a1, a2, b0, b1, b2) in PG(5, 2). The point
(a, b) ∈ PG(1, 23) thus gives a plane Π(a,b) in PG(5, 2) consisting of the points {(ax, bx) : x ∈ F8}.
So the point (1, 0) ∈ PG(1, 23) corresponds to the plane

Π(1,0) = 〈(1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0)〉.
The point (a, 1), a ∈ F8, corresponds to the plane

Π(a,1) = 〈(a0, a1, a2, 1, 0, 0), (a2, a0 + a2, a1, 0, 1, 0), (a1, a1 + a2, a0 + a2, 0, 0, 1)〉.

We can take the plane in the focal spread as the plane Π(1,0), and the lines la as the intersection of
the hyperplane x5 = 0 with the planes Π(a,1), a ∈ F8. Treating the hyperplane x5 = 0 as PG(4, q),
we may write

la = {(a0, a1, a2, 1, 0), (a2, a0 + a2, a1, 0, 1), (a0 + a2, a0 + a1 + a2, a1 + a2, 1, 1)}.

Let L = {la : a ∈ F8}. The functional repair code consists of the collection of all 3-subsets of L.
It is not hard to show that any set of 3 lines la, lb, lc from L will allow exactly one line ld ∈ L by
(3, 1)-repair, and this line satisfies d2 = ab+ ac+ bc. It is also not hard to see that the following
two conditions ([8, Example 2.2]) are satisfied by the lines of L:

(L1) Any 3 lines span PG(4, q).

(L2) Any pair of lines are skew.

This construction works for q > 2, in the sense that such a construction for focal spread works
over q > 2, and also a line can be obtained by (3, 1)-repair from any three lines (Theorem 4.3).
However, it is not clear that there is a nice relationship between a, b, c and d, as in the case for
q = 2. For example, for the case q = 3:

Take x3 − x + 1 = 0 over GF (3) to get GF (33) = {0, αi | α3 = α − 1}. The point (a, 1) on
PG(1, 33) with a = a0 + a1α + a2α

2 gives the plane

〈(a0, a1, a2, 1, 0, 0), (−a2, a0 + a2, a1, 0, 1, 0), (−a1, a1 − a2, a0 + a2, 0, 0, 1)〉

in PG(5, 3). Intersecting with x5 = 0 gives lines la = 〈(a0, a1, a2, 1, 0), (−a2, a0 + a2, a1, 0, 1)〉.
We can construct lα12 by (3, 1)-repair from l0, l1 and lα, but it is not clear what the relationship
between a, b, c, d is.
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Figure 2: Repair of l4 and l1.
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4.1 The focal spread construction is strictly functional

The repair process described above corresponds to functional repair. In this section we show that
this is necessary: this FRC does not admit exact repair. We begin with a geometric lemma that
we will use in the proof of this fact.

Lemma 4.2. Let {`1, `2, `3} be lines in PG(4, q) that satisfy (L1) and (L2). Then there is a
unique line m with m ∩ `i 6= ∅ for i = 1, 2, 3. 2

Proof. By (L2) we know that `1 and `2 span a hyperplane Π ⊂ PG(4, q). By (L1) we know that
`3 intersects Π in a unique point P3. Consider the plane σ = 〈P3, `2〉. Since `1 and `2 span Π, it
follows that σ intersects `1 in a unique point P1. The line m = 〈P1, P3〉 6= `2 lies in σ, as does `2,
and hence these two lines intersect in a unique point P2. Thus the line m intersects each of the
lines `1, `2 and `3, and it is unique by construction.

Theorem 4.3. Let {`1, `2, `3, `4} be lines in PG(4, q) that satisfy (L1) and (L2). Then at most
one of the lines can be obtained by exact (3, 1)-repair from the remaining three lines. 2

Proof. Suppose (without loss of generality) that `4 can be obtained by (3, 1)-repair from {`1, `2, `3}.
Then there exist points P1 ∈ `1, P2 ∈ `2 and P3 ∈ `3 such that `4 ⊆ 〈P1, P2, P3〉. We note that
it is not the case that `4 = 〈P1, P2, P3〉, for this would imply that `4 = 〈P1, P2〉, in which case
`4 would be contained in 〈`1, `2〉, in violation of (L1). Hence `4 ⊂ 〈P1, P2, P3〉. The line 〈P1, P2〉
therefore intersects `4 in a unique point, and hence by Lemma 4.2 is the unique line m124 meeting
`1, `2 and `4. Similarly, 〈P1, P3〉 is the unique line m134 meeting `1, `3 and `4.

Suppose now that some other line (say, `1) can be obtained by (3, 1)-repair from the remaining
lines (i.e. {`2, `3, `4}). See Figure 2. Repeating the above argument we observe that there are
points Q2 ∈ `2, Q3 ∈ `3 and Q4 ∈ `4 such that `1 ⊂ 〈Q2, Q3, Q4〉. However, in this case the line
〈Q2, Q4〉 meets `1 in a point, which implies 〈Q2, Q4〉 = m124 (by Lemma 4.2), and so Q2 = P2.
Similarly, 〈Q3, Q4〉 meets `1 in a point, so 〈Q3, Q4〉 = m134, and so Q3 = P3. But now we have
that Q2, Q3, Q4 ∈ 〈P1, P2, P3〉, and hence `1 ⊂ 〈P1, P2, P3〉. This contradicts the fact that `1 and
`4 are not coplanar, by (L2).
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This shows that this focal spread construction is strictly functional: one can always construct a
fourth line l4 = m from any three lines l1, l2, l3, and if one of l1, l2 or l3 fails, it cannot be repaired
exactly from the three remaining lines.

5 A simpler description

In our examples and constructions, we could enumerate a set of subspaces, and simply state that a
collection of subsets of these subspaces constitute a functional repair code, bypassing the recursive
nature of the definition (Definition 2.2).

However, such a description is not always useful, or easy to arrive at. Firstly, we would in general
like to find small codes. As an example, Theorem 3.2 allows L to be the set of all lines in a
projective plane, but we see in Example 3.1 that 3 lines suffices. Hollmann and Poh [8, Theorem
5.1] give a method of starting with a possible set of subspaces U = {U1, . . . , Un−1} and another
subspace Un constructed by (r, β)-repair from U , and obtaining a functional repair code from it
using the image under a group action. In Section 6 we model this process of building a functional
repair code using digraphs.

Secondly, this kind of description does not always convey the complications of the repair process.
We illustrate with an example. The focal spread construction of Section 4 admits a straigtforward
description similar to that of Theorem 3.2:

Let L be a set of lines in Σ = PG(4, q) satisfying conditions (L1), (L2):

(L1) Any 3 lines span PG(4, q).

(L2) Any pair of lines are skew.

Let A be a collection of 3-subsets of L. Then (Σ,A) is a functional repair code.

If we were to want to construction a set of such lines, how would we start? Because L is a strictly
functional repair code (Theorem 4.3), given a 3-subset {l1, l2, l3} in A, we obtain an l4 by (3, 1)-
repair, but the 3-subset containing l4, say, {l2, l3, l4} will give an l5 6= l1 by (3, 1)-repair. This
motivates the following steps in the construction:

Let L be a set of three lines satisfying (L1), (L2) to start with.

1. Take any 3 lines of L. Use (3, 1)-repair to get a fourth line.

2. Add this fourth line to L if it is not already in it.

3. Repeat until no new lines are constructed.

Take A to be the 3-subsets of L. Then A is a functional repair code á la Definition 4.1.

This motivates a clearer modelling of the repair properties. We examine this in the next section.

21



Figure 3: G(A) with n = 4, k = 3, r = 3.
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6 The repair condition as digraphs

We write this with m = 5, n = 4, k = 3, r = 3, α = 2 β = 1, for simplicity, but it can easily be
written more generally.

We can think of the repair condition (Definition 2.2(B)) of an (m;n, k, r, α, β)-functional repair
code (Σ,A) as a bipartite digraph G(A) = (V(A) ∪ V ′(A), E ∪ E ′) as follows:

Let V(A) be a set of vertices corresponding to the sets U of 3 lines in A - each set U ∈ A is a
vertex in V(A). By the repair condition, one could obtain a fourth line U ′ by (r, β)-repair from
any set U of 3 lines. Let V ′(A) be another set of vertices corresponding to these sets U ∪ {U ′},
U ∈ A, of four lines. The set of vertices of G(A) will be the (disjoint) union of these two sets of
vertices.

The (directed) edges of G(Σ,A) are defined as follows: There is an edge from V = {U1, U2, U3} ∈
V(A) to V ′ = {U1, U2, U3, U4} ∈ V ′(A) if and only if U4 is obtain by (r, β)-repair from {U1, U2, U3}.
We denote this set of edges by E . In addition, there is an edge from V ′ = {U1, U2, U3, U4} ∈ V ′(A)
to V ∈ V(A) if and only if V = V ′ \ {Ui}, i ∈ {1, 2, 3, 4}. We denote this set of edges by E ′. The
set of edges of G(A) will be the (disjoint) union of these two sets of edges.

Clearly there are edges only between V(A) and V ′(A) and G(A) is a bipartite digraph. An edge
from V(A) to V ′(A) signifies a repair while an edge from V ′(A) to V(A) signifies a node failure.
Figure 3 gives a small example of what the node failures and repairs might look like.

Since each node may fail, there must be four out-edges from each vertex in V ′(A), and since every
three nodes must be able to repair a fourth node, there must be at least one out-edge from each
vertex in V(A).

Definition 6.1. Let G = (V1 ∪ V2, E) be a bipartite digraph with parts V1, V2. We say that G
satisfies the repair condition if all vertices in V1 has outdegree at least 1 and all vertices in V2 has
outdegree n.

This view of a functional repair code immediately gives us some idea on the number of subspaces
we need and the size of A, as well as the characterisation of exact repair.
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Figure 4: G(A)
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Lemma 6.2.

|V(A)| ≤
( N
n− 1

)
, |V ′(A)| ≤

(N
n

)
.

As a consequence, N ≥ n. 2

Lemma 6.3.
|E(A)| ≥ |V(A)|, |E ′(A)| = n|V ′(A)|.

2

This leads to the characterisation:

Lemma 6.4. A functional repair code (Σ,A) is an exact repair code if and only if G(A) is a
complete bipartite digraph (with an in-edge and and out-edge between each pair of vertices from
different parts) with |V(A)| = n, |V ′(A)| = 1. 2

A functional repair code admits exact repair if it has a subgraph that satisfies the condition in
Lemma 6.4, while a strictly functional repair code would satisfy the condition that there exists
V ′ ∈ V ′A, V ∈ V(A), such that (V ′, V ) ∈ E ′(A) but (V, V ′) 6∈ E(A).

We illustrate this with the strictly functional repair code of Example 3.6. Figure 4 is the digraph
corresponding to the example. The dotted lines represent repairs. The node {l1, l2, l3} and the
dashed lines show that if any of l1, l2 or l3 failed, they cannot be repaired from the remaining
lines. And if all nodes containing l1 are removed, we have an exact repair code consisting of three
non-concurrent lines.

Note that we are only encoding the repair process. We say nothing about m, q, r, k, β and
α. If a bipartite digraph satisfies the repair condition it still doesn’t say if it can be realised by
any parameters. We call the digraph G realisable if there is (m, q, r, k, β, α) such that there is an
(m;n, k, r, α, β)-functional repair code (FRC) (PG(m− 1, q),A) with G(A) ≡ G.

7 Further work

The construction of Theorem 3.2 does not require the projective plane to be Desarguesian. This
naturally leads to the question of whether one could construct more functional repair codes from
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designs, since linearity is not required. This approach may be useful for functional repair code
requiring repair-by-transfer ([20, 1, 22]), where the nodes contributing information for repair do
not perform any computations. There has also been studies of locally repairable codes via matroid
theory ([27, 28]) which may also be of interest for functional repair codes.

Construction 3.5 gives a functional repair code that is flexible in terms of locality and availability
for node repairs. There are some recent work ([23]) in symbol localilty and availability : not
necessarily repairing whole nodes but only some symbols in a node. It would be intresting to see
how this translate into projective geometry.

The focal spread construction in Section 4 gives the only known example of a strictly functional
repair code. However, it is not clear whether a generalisation to larger fields or to higher dimensions
would retain this property. Indeed, it is not even clear whether one could still have a succinct
description of the repair process. This indicates that there is still much to understand about this
interesting structure. It is also not clear whether the distilling of the properties of functional repair
from this focal spread construction into a non-recursive definition (Section 5) may be generalised.
Again, this indicates that further study of this structure may be profitable.

The view of a functional repair code as a digraph allows some characterisation of exact repair
codes. However, as yet it is not clear when a digraph with the right properties are actually
realisable as a functional repair code. Another aspect to consider is: given a digraph, is it always
possible to “complete” it so that it satisfies the repair condition or are there cases where this is
impossible?
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