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THE EXCLUDED 3-MINORS FOR VF-SAFE DELTA-MATROIDS

JOSEPH E. BONIN, CAROLYN CHUN, AND STEVEN D. NOBLE

ABSTRACT. Vf-safe delta-matroids have the desirable property of behaving well under
certain duality operations. Several important classes of delta-matroids are known to be
vf-safe, including the class of ribbon-graphic delta-matroids, which is related to the class
of ribbon graphs or embedded graphs in the same way that graphic matroids correspond
to graphs. In this paper, we characterize vf-safe delta-matroids and ribbon-graphic delta-
matroids by finding the minimal obstructions, called 3-minors, to belonging to the class.
We find the unique (up to twisted duality) excluded 3-minor within the class of set systems
for the class of vf-safe delta-matroids. Geelen and Oum [17] found the 166 (up to twists)
excluded minors for ribbon-graphic delta-matroids. By translating Bouchet’s characteri-
zation of circle graphs to the language of 3-minors, we show that this class can also be
characterized amongst delta-matroids by a set of three excluded 3-minors up to twisted
duality.

1. INTRODUCTION

A set system is a pair S = (E,F), where F, or E(S), is a set, called the ground set,
and F, or F(S), is a collection of subsets of E. (All set systems in this paper have finite
ground sets.) The members of F are the feasible sets. We say that S is proper if F # .

A matroid M has many associated set systems with £ = F(M ). The most important of
these from the perspective of this paper has 7 = B(M), the set of bases of M. Recall that
the bases of a matroid satisfy the following exchange property: for any By, Bs € B(M)
and for each element z € By — Bo, there is ay € By — Bj for which By A{z,y} € B(M).
To get the definition of a delta-matroid, replace set differences by symmetric differences.
Thus, as introduced by Bouchet in [2], a delta-matroid is a proper set system D = (E, F)
for which F satisfies the delta-matroid symmetric exchange axiom:

(SE) for all triples (X, Y, u) with X and Y in F and u € XAY, there is
av € XAY (perhaps u itself) such that X A{u, v} is in F.

Clearly every matroid (E(M), B(M)) is a delta-matroid.

Just as there is a mutually-enriching interplay between matroid theory and graph the-
ory, the theory of delta-matroids has substantial connections with the theory of embedded
graphs or equivalently ribbon graphs; see [13, 14]. Brijder and Hoogeboom [9, 10, 11]
introduced the operation of loop complementation, which we define in the next paragraph.
This operation is natural for the class of binary delta-matroids and its subclass of ribbon-
graphic delta-matroids. These classes are closed under loop complementation, but that is
not true for the class of all delta-matroids. We investigate when loop complementation of
a delta-matroid yields a delta-matroid.

For a set system S = (E, F) and e € E, we define S + e to be the set system

(L. S+e=(E,FA{FUe:e¢ FecF}).

Date: July 3, 2018.
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(As in matroid theory, we often omit set braces from singletons.) Note that (S+e)+e =S
and that S + e is proper if and only if .S is proper. It is straightforward to check that if
e1,ea € Ethen (S+e1) +e2 = (S +e2)+er. Thusif X = {eq,...,e,} is a subset of
E, then the set system S + X is unambiguously defined by

(1.2) S+X=((S+e)+ ) +en.

This operation is called the loop complementation of S on X. There is a natural opera-
tion of embedded graphs, namely partial Petriality, to which loop complementation corre-
sponds. More precisely if two embedded graphs are partial Petrials of each other then their
ribbon graphic delta-matroids are related by a loop complementation [14, Section 4].

For a delta-matroid D and element e € E(D), the set system D + e need not be a delta-
matroid. Consider, for example, the delta-matroid D3 = ({a, b, c}, 2840t — {{a b c}}).
Then D3 + {a, b, c} is the set system ({a, b, c}, {0, {a, b, c}}). This is not a delta-matroid.
In fact, it is an excluded minor for the class of delta-matroids [1].

Another operation on delta-matroids is the twist. For A C E, the twist of S on A, which
is also called the partial dual of S with respect to A, denoted S * A, is given by

SxA=(E{FAA:FeF}).

Note that (S * A) * A = S. The dual S* of S is S * E. In contrast with loop complemen-
tation, each twist of a delta-matroid is a delta-matroid. Apart from the dual, the twists of a
matroid (E(M), B(M)) are generally not matroids, as discussed in [14, Theorem 3.4].

Two set systems are said to be twisted duals of one another if one may be obtained from
the other by a sequence of twists and loop complementations. Following [11], a delta-
matroid is said to be vf-safe if all of its twisted duals are delta-matroids. (The term vf-safe
is short for ‘vertex-flip safe’. Both of the terms vf-safe and loop complementation are
named for operations on graphs representing binary delta-matroids [9], which we discuss
in Section 5.)

Delta-matroids belonging to certain important classes are known to be vf-safe. In fact,
every twisted dual of a ribbon-graphic delta-matroid is a ribbon-graphic delta-matroid [14,
Theorem 2.1,Theorem 4.1], and every twisted dual of a binary delta-matroid is a binary
delta-matroid [11, Theorem 8.2]. Brijder and Hoogeboom showed that quaternary matroids
are vf-safe [12], although, as mentioned earlier, matroids are not closed under twists.

In the main result of this paper, Theorem 4.4, we identify D3 as essentially the unique
obstacle for a delta-matroid to be vf-safe. More precisely, we show that the excluded 3-
minors for the class of vf-safe delta-matroids within the class of set systems comprise the
28 set systems that are the twisted duals of D3. These set systems are given in Tables 2-7.
In the final section of the paper, we relate 3-minors to other minor operations that have
appeared in the literature, and we apply Theorem 4.4 to recast some known results using
short lists of excluded 3-minors.

2. BACKGROUND

Let S = (F,F) be a proper set system. An element e € E is a loop of S if no set
in F contains e. If e is in every set in F, then e is a coloop. If e is not a loop, then the
contraction of e from S, written S/e, is given by

Sle=(E—e,{F —e:ec FeclF}).
If e is not a coloop, then the deletion of e from S, written S\e, is given by

S\e=(E—e¢,{FCE—e:FeF}.
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If e is a loop or a coloop, then one of S/e and S\ e has already been defined, so we can set
S/e = S\e. Any sequence of deletions and contractions, starting from .S, gives another
set system S’, called a minor of S. Each minor of S is a proper set system.

The order in which elements are deleted or contracted can matter. See [1] for an exam-
ple. However, for disjoint subsets X and Y of E, if some set in F is disjoint from X and
contains Y, then the deletions and contractions in S\ X/Y can be done in any order, and

S\X/)Y =(E—(XUY),{F-Y : FeFandY CF C E— X}).

The following lemma, which is [1, Lemma 2.1], shows that all minors of a proper set
system are of this type.

Lemma 2.1. For any minor S’ of a proper set system S = (E,F), there are disjoint
subsets X andY of E such that

S =S\X)Y =(E—(XUY),{F-Y : FeFandY CF C E — X}).

Bouchet and Duchamp [3] showed that, if .S is a delta-matroid and S’ = S\ X /Y, then
S’ is a delta-matroid and .S’ is independent of the order of the deletions and contractions.

The following definition from [9] is equivalent to that given in equations (1.1)—(1.2).
Equivalence can be shown by a routine induction on |A].

Definition 2.2. If S = (E,F) is a set system and A is a subset of E, then the loop
complementation of S by A, denoted by S+ A, is the set system on E such that F is feasible
in S + A if and only if S has an odd number of feasible sets F' with F — A C F' C F.

Note that if A = {e}, then the feasible sets of S + e that do not contain e are the same
as those of S, and a set F’ containing e is feasible in S + e if and only if one but not both
of F'and F' — e is feasible in S. That is, so long as e is not a loop or coloop,

F(S+e)=F(S\e)U{FUe: F e F(S\e) AF(S/e)}.

If e is a loop, then F(S +e) = FU{FUe: F € F}.Ifeisacoloop, then S +¢e = S.

The twist and loop complementation operations interact in the following way. If A and
B are disjoint subsets of E then (S 4+ A) * B = (S * B) + A (a two-element case check
and routine induction suffice to verify this), but in general (S * A) + A # (S + A) x A.
However ((S+ A) « A) + A = ((Sx A) + A) = A (see [9]). It follows that there are at
most six twisted duals of S with respect to a fixed set A. These relations ensure that any
twisted dual of S is of the form ((S * X) + Y') * Z for suitably chosen subsets X, Y and
Z of Ewith X C Z. The first relation is used in the proof of the following result.

Lemma 2.3. Let S = (E, F) be a proper set system, and let a and b be distinct elements
of E. Then
(i) S+a\a=S\a,
(ii)) S+ a\b= S\b+ a, and
(iii) S+a/b=S/b+a

Proof. 1f a is a coloop of S, then S + a = S, so statement (i) follows. Also, a is not a
coloop of S'if and only if it is not a coloop of S+ a, in which case the feasible sets avoiding
a are the same in .S and .S + a by the definition.

For statement (ii), observe that b is a coloop of S + « if and only if it is a coloop of S.
When b is not a coloop of .S, statement (ii) holds since for each side, the feasible sets are
the sets ' with b ¢ F' for which an odd number of the sets X with F'—a C X C F are in
F. When b is a coloop of S, we need to show that S + a/b = S/b + a. This holds since
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for each side, the feasible sets are the sets F' with b ¢ F' for which an odd number of the
sets X with (F —a)UbC X C FUbarein F.
It is easy to check that S’ /e = S’ x e€\e, so, using statement (ii), we get statement (iii):

S+a/b=((S+a)xb)\b=((S*b)+a)\b=((S*xb)\b) +a=S/b+a. O

The counterpart, for contractions, of statement (i) is false, as taking S = D3 shows.

3. 3-MINORS

We introduce a third minor operation on set systems. For a proper set system S, we
define S § e to be the set system (S + €)/e. This minor operation was first defined by
Ellis-Monaghan and Moffatt [15] for ribbon graphs and in an equivalent way by Brijder
and Hoogeboom [10] for delta-matroids. The notation } is new, but it seems appropriate
to shorten the unwieldy +e/e notation. Motivation for this definition comes from two
directions. First, one way to define the Penrose polynomial of a ribbon graph is by specify-
ing a recursive relation analogous to the deletion-contraction recurrence of the chromatic
polynomial with this minor operation replacing contraction. For this reason, following
a suggestion of Iain Moffatt [18], we propose calling the operation Penrose contraction.
Second, there is a class of combinatorial objects called multimatroids [6, 7, 8], of which
tight 3-matroids are a particular subclass. Brijder and Hoogeboom [10] showed that tight
3-matroids are equivalent (in a sense that we do not make precise here) to vf-safe delta-
matroids. Tight 3-matroids have three minor operations corresponding to deletion, con-
traction, and Penrose contraction in vf-safe delta-matroids.

Any sequence of the three minor operations, starting from S, gives another proper set
system S’, called a 3-minor of S. A collection C of proper set systems is 3-minor closed if
every 3-minor of every member of C is in C. Given such a collection C, a proper set system
S is an excluded 3-minor for C if S ¢ C and all other 3-minors of S are in C. A proper
set system belongs to C if and only if none of its 3-minors is an excluded 3-minor for C.
Thus, the excluded 3-minors determine C; they are the 3-minor-minimal obstructions to
membership in C.

For a given class C, there may be substantially fewer excluded 3-minors than excluded
minors. For instance, in [17], Geelen and Oum found 166 delta-matroids that, up to twists,
are the excluded minors for ribbon-graphic delta-matroids within the class of binary delta-
matroids. In contrast, in Theorem 5.8, we show that every binary matroid that does not
have a twisted dual of one of three delta-matroids as a 3-minor is ribbon-graphic.

An element e is called a pseudo-loop of S if e is a loop of S + e. The next lemma
characterizes these elements.

Lemma 3.1. For an element e in a proper set system S, the following statements are
equivalent:
(1) eis aloop of S + e, that is, a pseudo-loop of S,
(i) FUe € F(S)ifandonly if F € F(S), and
(iii)) S*xe=S.
Pseudo-loops of S are neither loops nor coloops of S. Furthermore, Ste = S\e=5/e
if and only if e is a loop, a coloop, or a pseudo-loop of S.

Proof. The equivalence of statements (i)—(iii) is immediate from the definitions. Statement
(ii) implies that pseudo-loops are neither loops nor coloops. If e is a loop of S, then
Ste=S\esince F(S+e)=F(S)U{FUe: F € F(S)} also, S\ e = S/e by
definition. If e is a coloop of S, then S f e = S/esince S + e = S; also, S\ e = S/e by
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definition. If e is a pseudo-loop of S, then statements (i) and (ii) gives the equality. If e is
not a loop, a coloop, or a pseudo-loop of S, then S\ e # S/e by the failure of statement
(ii) and the fact that some, but not all, sets in F(.S) contain e. O

The following two results show that one may choose the operations used to form a
3-minor in such a way that they commute.

Lemma 3.2. Let S = (E,F) be a proper set system, and let X,Y, and Z be pairwise
disjoint subsets of E. If there is a set " with

(B.1) FCE—(XUYUZ) and |FN{F :FUY CF CFUY UZ} isodd,

then the minor operations in S\ X/Y 1 Z can be done in any order and a set F is feasible
in S\ X/Y 1 Z if and only if it satisfies Condition (3.1).

Proof. A set F meets Condition (3.1) ifandonlyif F C E— (XUYUZ)and FUY UZ
isin F(S+ Z). If there is at least one set satisfying Condition (3.1), the remarks preceding
Lemma 2.1 imply that the deletions and contractions in forming (S + Z) \ X/(Y U 2)
from S + Z may be done in any order and a set ' is feasible in (S + Z) \ X/(Y U Z)
if and only if it satisfies Condition (3.1). Lemma 2.3 implies that we may defer taking
a loop complementation of an element in Z until just before it is contracted. The result
follows. O

We next show that for every 3-minor of a proper set system, there are pairwise disjoint
sets X, Y and Z satisfying Condition (3.1).

Lemma 3.3. Let S’ be a 3-minor of a proper set system S = (E,F). Then there are
pairwise disjoint subsets X, Y, and Z of E such that 8" = S\ X/Y { Z and there is a set
F satisfying Condition (3.1).

Proof. Suppose we get S’ from S by, for each of e1, ea, . . ., e in turn, performing one the
three minor operations, giving the sequence of minors Sy = S, S1,..., Sk = 5. Let X be
the set of elements e; in {e1, ..., e} that satisfy at least one of the following conditions:

(1) e; is aloop or a pseudo-loop of S;_1,s0.5; = S;—1 \ €;, or

(2) e; is notacoloop of S;_1 and S; = S;_1 \ e;.
Let Y be the set of elements e; in {e1,...,ex} — X such that e; is either a coloop of
Si—1 or S; = S;_1/e;. Note that if e; € Y then it is not a loop in S;_;. Finally let
Z = {e1,...,ex} — (X UY), so that Z comprises the elements e; in {eq,...,ex} for
which S; = S;_1 I e; but ¢; is not a loop, pseudo-loop or coloop. Then there is always at
least one set F' satisfying Condition (3.1). (]

Table 1 shows the result of applying one of the three minor operations that remove e
after taking one of the six twisted duals, with respect to e, of a proper set system. If instead
the minor operation removes a different element from that used for the twisted dual, then
these operations commute.

We next show that any 3-minor of a twisted dual of a proper set system S is a twisted
dual of some 3-minor of S. It is easy to see that the converse is also true.

Lemma 3.4. Suppose S is a proper set system and S’ is a twisted dual of S. If 8" is a
3-minor of S', then S has a 3-minor that is a twisted dual of S”.

Proof. There are subsets A and B of E(S) such that we obtain S” from S by first forming
a twisted dual for each element of A and then performing one of the three minor operations
for each element of B. The remarks before this lemma imply that one may reorder these
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/e \e fe

S S/le S\e Ste
Sxe S\e S/e Site
S+e Ste S\e SJe

(S+e)xe S\e Ste Sfe
(Sxe)+e Ste Sle S\e
((Sxe)+e)xe| Sle Sie S\e

TABLE 1. Interaction of minor operations and twisted duality.

operations to first deal with the elements of A N B, one by one, forming a twisted dual for
an element and then a 3-minor before moving on to the next element. According to Table 1
each of these pairs of operations may be replaced by a single 3-minor operation. Next a
3-minor is formed for each element of B — A. The resulting set system is a twisted dual of
S"" with respect to the elements of A — B. O

4. CHARACTERIZATIONS BY EXCLUDED 3-MINORS

Brijder and Hoogeboom [11] showed that the class of vf-safe delta-matroids is minor-
closed. A computer search for excluded minors for this class turns up many examples with
apparently little structure. The class of vf-safe delta-matroids is defined using both the
twist and loop complementation operations, so it is natural to try to characterize this class
using 3-minors. By Lemma 4.1 below, the class of vf-safe delta-matroids is closed under
Penrose contraction, so, with the result in [11], it is closed under 3-minors. The main
result of this section, Theorem 4.4, gives the excluded 3-minors for the class of vf-safe
delta-matroids within the class of set systems.

Lemma 4.1. [f S is vf-safe and e € E(S), then S | e is vf-safe.

Proof. If S is vf-safe, then all of its twisted duals are vf-safe by definition, so S + e is
vf-safe. Theorem 8.3 in [11] states that every minor of a vf-safe delta-matroid is vf-safe.
Thus Ste = S + e/e is vf-safe. O

Let
Si = ({ela €2,..., ei}v {Q)v {617 €2,... 7€i}})'
Let S be the set of all twists of the set systems in {Ss, Sy, ... }. Let

o T = ({a,b,c},{0,{a,b},{a,b,c}});

o Tb = ({a,b,c}, {0,{a,b},{a,c},{a,b,c}});

o T3 = ({a,b,c},{0,{a}, {a,b},{a,b,c}});

o Ty = ({a,b,c}, {0, {a}, {a, b}, {a,c},{a,b,c}});

o 75 = ({a,b,c,d},{0,{a,b},{a,b,c,d}});

o Ts = ({a,b,c,d},{0,{a,b},{a,c}, {a,b,c,d}});

o 7= ({a,b,c,d},{0,{a,b},{a,c},{a,d},{a,b,c,d}});

o Ty = ({a,b,c,d},{0,{a},{a,b},{a,c},{a,d},{a,b,c,d}}).
Let T be the set of all twists of the set systems in {7, T», . .., T3 }. By the following result
from [1, Theorem 5.1], these are all of the excluded minors for delta-matroids within the
class of set systems.

Theorem 4.2. A proper set system S is a delta-matroid if and only if S has no minor
isomorphic to a set systemin S U T.
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The following lemma is key for finding the excluded 3-minors for vf-safe delta-matroids
within the class of set systems.

Lemma 4.3. Let S be an excluded 3-minor for the class of vf-safe delta-matroids. Then S
has a twisted dual that is isomorphic to a set system in S U T.

Proof. Such an excluded 3-minor S either is not a delta-matroid and all of its other minors
are delta-matroids, or it is a delta-matroid and has a twisted dual S’ that is not a delta-
matroid. In the former case S is isomorphic to a set system in S U 7 and the lemma holds.
In the latter case S’ has a minor .S” isomorphic to a member of S U 7. By Lemma 3.4, S
has a 3-minor S”” that is a twisted dual of S”. Therefore S’ is not a vf-safe delta-matroid.
The only 3-minor of S that is not a vf-safe delta-matroid is S itself. Hence S = S and
the lemma holds. ]

To connect the next result with the remarks in Section 1, note that D3 + {a, b, ¢} = Ss.

Theorem 4.4. A proper set system is a vf-safe delta-matroid if and only if it has no 3-minor
that is isomorphic to a twisted dual of Ss.

Proof. All proper set systems with two elements are delta-matroids, and therefore each one
is vf-safe, so the twisted duals of S3 are excluded 3-minors for the class of vf-safe delta-
matroids. By Lemma 4.3 every excluded 3-minor for the class of vf-safe delta-matroids
must be a twisted dual of a set system in S U 7. We first consider the set systems with
three-element ground sets. We have T} + ¢ = S3 and T3 + {b,c} ~ T5 + a = T} and
Ty + a = T3, so every excluded 3-minor of size three is a twisted dual of Ss.

Lastly, we show that no other set system in S U 7 is an excluded 3-minor. Lemma 3.4
implies that each twisted dual of an excluded 3-minor is an excluded 3-minor, so it suffices
to show that each of T5, Tg, 1%, Ty, and S,,, for n > 4, has a smaller member of S U T
as a 3-minor. Indeed, S, f e, = S,_1, forn > 4, Tsid = Ty, Teid = Tgid = T, and
Trid =1Ty. d

As stated in the introduction, there are 28 twisted duals of S3, up to isomorphism. These
excluded 3-minors are listed in Tables 2—7.

5. 3-MINORS AND VERTEX MINORS

We now explain the link between 3-minors and vertex minors in binary delta-matroids.
Vertex minors are well-studied, but are only defined for binary delta-matroids. In contrast,
the concept of a 3-minor is relatively unstudied, but is important due to its direct correlation
with ribbon-graph operations and its applicability beyond binary delta-matroids. For this
reason, and for completeness, we give a full explanation here. Although the key ideas
presented here are not new, the link between vertex minors and 3-minors has not previously
been fully described.

A delta-matroid is normal if the empty set is feasible. A delta-matroid is even if for
every pair F; and F of its feasible sets |Fy A Fy| is even. Equivalently, the sizes of all
its feasible sets are of the same parity. Let M denote a symmetric binary matrix with rows
and columns indexed by [n] = {1,...,n}. Take E = [n] and F to be the collection of
subsets S of [n] for which the principal submatrix of M comprising the rows and columns
indexed by elements of .S is non-singular. Bouchet [3] showed that D(M) = (E,F) isa
delta-matroid. We call such delta-matroids basic binary. (In the literature, what we have
called basic binary delta-matroids are often called graphic, but we prefer to avoid this term
to prevent confusion with ribbon-graphic delta-matroids.) A delta-matroid is binary [3] if
it is a twist of a basic binary delta-matroid.
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It follows immediately from the definition that every basic binary delta-matroid is nor-
mal and that a basic binary delta-matroid is uniquely determined by its feasible sets of size
at most two. A well-known result of linear algebra states that a symmetric matrix with an
odd number of rows (and columns) and zero diagonal is singular. Consequently a basic
binary delta-matroid is even if and only if it has no feasible sets of size one.

Let A be a matrix over an arbitrary field with rows and columns indexed by [n], and let
X be a subset of [n] such that the principal sub-matrix P = A[X] is non-singular. Suppose

g g) . Then the matrix A x X is defined by

B Pfl _Ple
A*X°‘@n%1 S—RP*Q)'

Note that if A is a symmetric binary matrix then A * X is symmetric. The following result
is due to Tucker [20].

without loss of generality that A =

Theorem 5.1. Let A be a matrix over an arbitrary field with rows and columns indexed
by [n], and let X be a subset of [n] such that the principal sub-matrix P = A[X] is non-
singular. Then for every subset Y of [n], we have

det(A[X AY))
det(A[X])
In particular for any subset Y of [n], the principal submatrix (A x X)[Y] is non-singular

if and only if the principal submatrix A[X A Y] is non-singular.
The following corollary is immediate.

det((A* X)[Y]) =

Corollary 5.2. Suppose that A is a binary matrix, and X is a feasible set of D(A). Then
D(A)«* X = D(Ax X).

See [3] for an alternative proof of this result that holds for arbitrary fields. A conse-
quence of this corollary is that every normal twist of a basic binary delta-matroid is basic
binary.

A looped simple graph is a graph without parallel edges but in which each vertex is
allowed to have up to one loop. Much of the time we will forbid loops; we call such graphs
loopless simple graphs. Recall that basic binary delta-matroids are completely determined
by their feasible sets with size two or fewer. Clearly basic binary delta-matroids on the
set [n] are in one-to-one correspondence with looped simple graphs with vertex set [n];
likewise, even basic binary delta-matroids on [n] are in one-to-one correspondence with
loopless simple graphs with vertex set [n].

We take adjacency matrices to always be binary. Given a looped simple graph G and
its adjacency matrix A, we let D(G) denote the basic binary delta-matroid D(A). If X is
a subset of the edges of G, then X labels a subset of the rows and columns of A, and we
define G * X to be the looped simple graph with adjacency matrix A x X.

We now consider various transformations that may be applied to G and their effect on
D(G).

The loop complementation operation of Brijder and Hoogeboom was first defined in
terms of basic binary delta-matroids. If G is a looped simple graph and v is a vertex of G,
then the loop complementation G + v is formed by toggling the loop at v, that is, removing
a loop if there is one at v and adding one at v if there is no loop there.

The following lemma from [9] is straightforward.

Lemma 5.3. Let G be a looped simple graph with vertex v. Then D(G +v) = D(G) + v.



THE EXCLUDED 3-MINORS FOR VF-SAFE DELTA-MATROIDS 9

Our next operation is local complementation. There are several variations in the defini-
tion of local complementation: see, for instance, [19]. We will only require certain cases
of what is defined there. For a looped simple graph G with vertex v, let Ng(v) denote
the open neighbourhood of v, that is, the set of vertices, excluding v, that are adjacent
to v in G. We will generally write NV instead of Ng when there is no possibility of con-
fusion. The local complementation of G at v, denoted by G, is formed by toggling the
adjacencies between pairs of neighbours of v, that is, for every distinct pair x, y from the
neighbourhood of v, delete edge xy if x and y are adjacent in G and add edge zy if = and
y are not adjacent in G. Additionally, if there is a loop at v, then the loop status of every
vertex in the open neighbourhood of v is toggled. In both cases, adjacencies involving one
or more non-neighbours of v or v itself are unchanged and the presence or not of a loop
at v is unaffected. To distinguish the two cases, it will be helpful to refer to local comple-
mentation at v as simple local complementation when v is loopless, and non-simple local
complementation when there is a loop at v.

For delta-matroid D and subset A C E(D), let D¥A denote the dual pivot on A, which
isequal to D + A x A + A. The following result is implicit in the results of [19], but is not
expressed in this form.

Proposition 5.4. Let G be a loopless simple graph with vertex v. Then D(G") = (D(G)¥v)+
N(v).

Proof. Let A be the adjacency matrix of G. Then A is symmetric and all of its diagonal
entries are zero. Notice that the simple local complementation G can be formed by adding
a loop at v, performing the non-simple local complementation at v and then removing the
loops added at v and all of its neighbours.

We have D(G + v) = D(G) + v. Assume without loss of generality that v = 1 and

let Z = [n] — 1. Then the adjacency matrix of G + v is Clt for some vector c.

c
AlZ]
Then it follows from Corollary 5.2 that (D(G) +v) *v = D((G+v) *xv) = D(A’) where
A — 1 c

N <Ct AlZ] + ctc)”

A diagonal entry of c’c is non-zero if it corresponds to a neighbour of v and an off-
diagonal entry of ctc is non-zero if both the row and column correspond to neighbours of
v. Thus (D(G) 4+ v) x v = D(G") where G’ is formed from G by adding a loop at v and

performing the non-simple local complementation at v. Now G’ has loops at v and at all
neighbours of v, so

D(G") = D(G' +v+ N(v)) = D(G") + v+ N(v) = (D(G)¥v) + N (v). d
The corollary below is well-known and follows from the previous result.

Corollary 5.5. Let G be a loopless simple graph with adjacent vertices v and w. Then
D(((G")")") = D(G) *{v,w}.

Proof. We have
D(((G")")") = (D(G)%v + N(v))¥w + New (w))¥v + Nigeyw (v).

It follows from the discussion before Lemma 2.3 that one may reorder the loop complement
and twist operations so that those involving a particular vertex of G are done consecutively.
The result follows by considering the effect of the operations involving each vertex of G
separately and noting that
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Gy Go Gs
FIGURE 1. A complete set of circle graph obstructions.

(1) a common neighbour of v and w in G is a neighbour of v but not w in both G
and (GV)v,

(2) avertex other than w that is a neighbour of v but not w in G is a neighbour of both
v and w in G¥ and of w but not v in (G”)", and

(3) avertex other than v that is a neighbour of w but not v in G is a neighbour of both
vand w in (G”)" and of w but not v in G*. O

A vertex minor of a looped simple graph G is formed from G by a sequence of local
complementations and deletions of vertices. It is easy to check that if v and w are different
vertices of an unlooped simple graph, then (G*) \ w = (G \ w)? and thus one may assume
that all the local complementations are done first.

Perhaps the most important use of vertex minors is Bouchet’s characterization of circle
graphs. A chord diagram is a collection of chords of a circle. Chord diagrams are in one-to-
one correspondence with orientable ribbon graphs with one vertex. (For more information
on ribbon graphs, see [16] or [14].) To see this think of the circle and its interior as the
vertex of a ribbon graph and for each chord attach a ribbon to the vertex at the points
corresponding to the endpoints of the chord. Clearly two chords intersect if and only if
the corresponding ribbons e; and es are interlaced, that is, as one traverses the vertex one
meets an end of e, then an end of ey, then the other end of e;, and finally the other end
of e2. An unlooped simple graph is a circle graph if it is the intersection graph of the
chords in a chord diagram, that is, there is a vertex corresponding to each chord and they
are adjacent if and only if the chords cross. Equivalently a circle graph is the interlacement
graph of an orientable ribbon graph with one vertex: it has a vertex for each ribbon and
two vertices are adjacent if the corresponding ribbons are interlaced. Bouchet established
the following result [5].

Theorem 5.6. An unlooped simple graph is a circle graph if and only if it has no vertex
minor isomorphic to the graphs G1, G2 or G depicted in Figure 1.

We are now ready to state the link between 3-minors and vertex minors.

Theorem 5.7. (1) Let G be a unlooped simple graph and let H be a vertex minor of G.
Then D(H) is a 3-minor of D(G).

(2) Let D be a twisted dual of a basic binary delta-matroid and let D’ be a 3-minor of D.
Then there are graphs G and G' such that D(G) and D(G') are twisted duals of D
and D' respectively, and G’ is a vertex minor of G.

Proof. For part (1), note that a vertex minor of an unlooped simple graph is obtained
by a sequence of local complementations and vertex deletions. The result follows from
Proposition 5.4 and the fact that if v is a vertex of G then D(G \ v) = D(G) \ v.

For part (2), let F' be a feasible set of D and let

B={ecE(D): {e} € F(DxF)}.
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The remark following Corollary 5.2 implies that D * F is basic binary, so (D * F') 4+ B is an
even basic binary delta-matroid, so (D * F') + B = D(G) for some unlooped simple graph
G. It follows from Lemma 3.4 that there is a delta-matroid D" that is a 3-minor of D(G)
and a twisted dual of D’. We shall prove by induction on k that if G is an unlooped simple
graph and D" is a 3-minor of D(G) with k fewer elements, then there is an unlooped
simple graph G’ that is a vertex minor of G and such that D(G’) is a twisted dual of D"
The result then follows.

If Kk = 0, then take G’ = G. Otherwise D" is obtained from D(G) by a sequence
of k deletions, contractions and Penrose contractions. Suppose that the first operation is
the deletion of v. Then take G” = G \ v, which is a vertex minor of G. Furthermore
D(G)\ v = D(G") and D" is a 3-minor of D(G") with k — 1 fewer edges. Hence, by
induction, there is an unlooped simple graph G’ that is a vertex minor of G” and hence of
G, and such that D(G") is a twisted dual of D”. Suppose next that the first operation is the
Penrose contraction of v. Then take G” = (G") \ v. We have

(The last equality uses Table 1.) Now D(G") is a twisted dual of D(G)}v, so it has a
3-minor D"’ with k — 1 fewer elements that is a twisted dual of D". Hence, by induction,
there is an unlooped simple graph G’ that is a vertex minor of G” such that D(G’) is a
twisted dual of D"’ and consequently of D”. In the final case the first operation is the
contraction of v. If v is an isolated vertex of G then v appears in no feasible set of D(G)
of size at most two and consequently in no feasible set of D(G) of any size. Thus v is a
loop of D(G) and D(G)/v = D(G) \ v = D(G \ v). If v is not an isolated vertex of v
then let w be a neighbour of v. We have

D(((G")*)" \v) = D((G*)*)") \ v
= (D(G) *{v,w}) \ v
= (D(GQ)/v) * w.

The proof of this case is completed in a similar way to the case of Penrose contraction. [

From the preceding result we obtain the following restatement of Bouchet’s result, de-
termining the three binary delta-matroids that are the excluded 3-minors for ribbon-graphic
delta-matroids.

Theorem 5.8. A binary delta-matroid is ribbon-graphic if and only if it has no 3-minor
that is a twisted dual of D(G1), D(G2) or D(GS3).

Proof. If D is a binary delta-matroid and v is an element of D then D is ribbon-graphic if
and only if D + v is ribbon graphic, because it follows from Theorem 4.1 of [14] that if
R is aribbon graph with D = D(R) then D + v is the delta-matroid corresponding to the
ribbon graph formed from R by applying a half-twist to v. Let

B={cecED):{e} € F(D)}.
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Then D + B is even and, furthermore, D + B is ribbon-graphic if and only if D is ribbon-
graphic. Now D + B = D(G) where G is an unlooped simple graph. Bouchet’s Theo-
rem 5.6 states that G is a circle graph if and only if G has no vertex minor isomorphic to
G4, G or Gs. Equivalently D + B is ribbon-graphic if and only if it has no 3-minor that
is a twisted dual of D(G1), D(G2) or D(G3). As D + B is a twisted dual of D, the result
follows. (]

We close by presenting excluded 3-minor results for the classes of binary delta-matroids
and ribbon graphic delta-matroids that follow from Theorem 4.4. Bouchet [4] proved that
every minor of a binary delta-matroid is binary and gave the following excluded-minor
characterization of binary delta-matroids.

Theorem 5.9. A delta-matroid is binary if and only if it does not have a minor isomorphic
to any of the following five delta-matroids or their twists.

() By = ({a,b,c},{0,{a,b},{a,c}, {b,c}, {a,b,c}});

(2) By =S5+ {a,b,c};

(3) Bs = ({a,b,c}, {0, {b},{c},{a,b},{a, c},{a,b,c}});

@) By = ({a,b,c,d}, {0, {a,b},{a,c},{a,d},{b,c},{b,d}, {c, d}});

(5) Bs = ({a,b,¢,d},{0,{a,b},{a,d}, {b,c},{c,d},{a,b,c,d}}).

We obtain corollaries of this result characterizing binary delta-matroids in terms ex-
cluded 3-minors.

Corollary 5.10. A vf-safe delta-matroid is binary if and only if it has no 3-minor that is a
twisted dual of B;.

Proof. Theorem 8.2 of [11] states that every twisted dual of a binary delta-matroid is a
binary delta-matroid. In particular every binary delta-matroid is vf-safe. Moreover, every
3-minor of a binary delta-matroid is binary. The delta-matroid B; is vf-safe and all of its
3-minors are binary. Thus all of its twisted duals are excluded 3-minors for the class of
binary delta-matroids.

Suppose that D is a vf-safe delta-matroid that is not binary. Then Theorem 5.9 implies
that D has a minor isomorphic to a twist of B; for 1 < ¢ < 5. The delta-matroid By is
not vf-safe and B4id = B, so D has no minor isomorphic to a twist of By or of By.
Furthermore (B3 4+ a)* = By, and Bs{d ~ Bs. Thus D has a 3-minor that is isomorphic
to a twisted dual of Bj. O

By combining this result with Theorem 4.4, we obtain the following.

Corollary 5.11. A proper set system is a binary delta-matroid if and only if it has no
3-minor that is a twisted dual of By or Ss.

Finally we combine the last two results with Theorem 5.8.

Corollary 5.12. A proper set system is a ribbon graphic delta-matroid if and only if it has
no 3-minor that is a twisted dual of By, S5, D(G1), D(G2) or D(GS3).

6. APPENDIX: THE TWISTED DUALS OF S3

As proved in Theorem 4.4, these twisted duals of S5 are the excluded 3-minors for
vf-safe delta-matroids.
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Ss ’ ) {a,b,c} ‘
Syx{a} [ {a} {0} |

TABLE 2. All twists of S3 up to isomorphism.

’ 0 {a} {a,b,c} ‘ 0 {b,c} {a,b,c} ‘
Sz + {a} (83 + {a})”
10 {a} {b.c} | {a} {b,c} {abc}]
(83 + {a}) = {a} (83 + {a}) = {b,c}
{a,b} {0}
{b} {a,c} {c} {a,c}
(S5 + {a}) = {0} (S5 + {a}) * {a, c}

TABLE 3. All twists of S3 + {a} up to isomorphism. Dual pairs are side
by side.

{a} {a,c}
0 {b} {a,b} {a,b,c} |0 {c} {b,c} {a,b,c}
S3 + {a, b} (83 +{a,b})*

{a} {a,b} {a} {a,c}
RO feb {oep @B
(83 + {a,b}) * {a} (S5 + {a, b}) = {b,c}

{a, b} {a}
{c} {a,c} {a,b,c} |0 {b} {a,b}
{b, c} {c}
(S5 + {a,b}) x {c} (S3 + {a,b}) * {a, b}

TABLE 4. All twists of S5 + {a, b} up to isomorphism. Dual pairs are
side by side.

{a}t {a,0} {a} {a,b}
0 {v} {a,c} {or A{a,ct {a,b,c}
{c} {bc} {ct {bc}
S3 +{a,b,c} (S5 + {a,b,c})*
{a} {a, b}
{a, b} {o}
0 {b} {a,b,c} |0 {77 {a,c} {a,b,c}
{c} {a,c} {e} {b,c}
Ss +{a,b,c} x {a} Ss +{a,b,c} x {b,c}

TABLE 5. All twists of S3 + {a, b, ¢} up to isomorphism. Dual pairs are
side by side.
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{a,b}
{a} {b,c}

{a,b,c}

@
g

(53 % {a}) + {a, b}

(S5 {a}) + {a, b})"

(0 {3 {bc} {a,bc} |

((S3+ {a}) +{a,b}) = {a}

{a}  {a,b}
{c¢} {ac}

((S3+ {a}) + {a,b}) = {b}

TABLE 6. All twists of (S5 * {a}) + {a,b} up to isomorphism. Dual

pairs are side by side.

{a, b} {a}
{a} Ha,c} {b} {b,c}
{b, ¢} {c}
(93 x {a}) + {a,b, ¢} ((93 * {a}) +{a,b,c})"
0 %g {a,b,c} |0 %Z: 2 {a,b, c}
((S3 % {a}) +{a,b,c}) x{a}  ((Ss+{a}) +{a,b,c}) *{b,c}
woen ek [0 {0 Y

((S3 * {a}) + {a,b,c}) = {b}

TABLE 7. All twists of (S5 * {a}) + {a, b, ¢} up to isomorphism. Dual

pairs are side by side.

((S3 *{a}) + {a,b,c}) * {a,c}
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