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PURELY (NON-)STRONGLY REAL BEAUVILLE GROUPS

BEN FAIRBAIRN

Abstract. We discuss Beauville groups whose corresponding Beauville sur-

faces are either always strongly real or never strongly real producing several

infinite families of examples.

1. Introduction

Definition 1.1. A surface S is a Beauville surface if

• the surface S is isogenous to a higher product, that is, S ∼= (C1 × C2)/G
where C1 and C2 are algebraic curves of genus at least 2 and G is a finite
group acting faithfully on C1 and C2 by holomorphic transformations in such
a way that it acts freely on the product C1 × C2, and
• each Ci/G is isomorphic to the projective line P1(C) and the covering map
Ci → Ci/G is ramified over three points.

These surfaces were first defined by Catanese in [3] and the first significant
investigation of them was conducted by Bauer, Catanese and Grunewald in [2].
They have numerous nice properties and are relatively easy to construct making
them useful for producing counterexamples and testing conjectures. The following
condition is also investigated in [2].

Definition 1.2. Let S be a complex surface. We say that S is strongly real if
there exists a biholomorphism σ : S → S such that σ ◦ σ is the identity map.

What makes these surfaces particularly easy to work with is that all of the above
can be easily translated into group theoretic terms.

Definition 1.3. Let G be a finite group. Let x, y ∈ G and let

Σ(x, y) :=

|G|⋃

i=1

⋃

g∈G
{(xi)g, (yi)g, ((xy)i)g}.

A Beauville structure for the group G is a set of pairs of elements {(x1, y1), (x2, y2)} ⊂
G×G with the property that 〈x1, y1〉 = 〈x2, y2〉 = G such that

Σ(x1, y1) ∩ Σ(x2, y2) = {e}.
If G has a Beauville structure we say that G is a Beauville group.

A group defines a Beauville surface if and only if it has a Beauville structure.
Furthermore, the Beauville surface defined by a particular Beauville structure is
strongly real if and only if the corresponding Beauville structure has the property
of being strongly real that we define as follows.

Definition 1.4. Let G be a Beauville group and let X = {(x1, y1), (x2, y2)} be a
Beauville structure for G. We say that G and X are strongly real if there exists
an automorphism φ ∈ Aut(G) and elements gi ∈ G for i = 1, 2 such that

giφ(xi)g
−1
i = x−1i and giφ(yi)g

−1
i = y−1i .
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Most of the Beauville structures appearing in the literature are either explicitly
shown to be strongly real or the question of reality is never pursued. In many
groups there are elements that can never be inverted by automorphisms meaning
any Beauville structure defined using such elements cannot be strongly real, indeed
groups typically have numerous Beauville structures some of which are strongly
real, some of which are not. Here we are interested in the extreme cases and thus
make the following definition.

Definition 1.5. A finite group G is a purely strongly real Beauville group if
G is a Beauville group such that every Beauville structure of G is strongly real. A
finite group G is a purely non-strongly real Beauville group if G is a Beauville
group such that none of its Beauville structures are strongly real.

Throughout we shall follow the conventions that in a group G and elements
g, h ∈ G we have that gh = hgh−1 and [g, h] = ghg−1h−1.

This paper is organised as follows. In Section 2 we will give infinitely many
examples of Beauville groups that have strongly real Beauville structures as well as
Beauville structures that are not suggesting that groups typically lie in neither of
the categories in Definition 1.5. Despite this, we go on in Section 3 to give infinitely
many examples of purely strongly real Beauville groups before in the final section
giving infinitely many examples of purely non-strongly real Beauville groups.

2. Neither Case

We first prove results showing that Beauville groups typically fall into neither
case with several different examples.

Lemma 2.1. If n > 5, then the alternating group An is neither a Purely strongly
real Beauville group nor a non-strongly real Beauville group.

Proof. Strongly real Beauville structures for these groups were constructed by
Fuertes and González-Diez in [8] so it is sufficient to construct non-strongly real
Beauville structures for these groups. We consider the cases n odd and n even sep-
arately. Recall that in either case, if two permutations have different cycle type,
then they cannot be conjugate.

First suppose that n ≥ 7 is odd. Let

x1 := (1, 2, 4) and y1 := (1, 2, 3, 4, . . . , n).

We have that their product is the n-cycle x1y1 = (1, 3, 4, 2, 5, . . . , n) by direct calcu-

lation. By considering the subgroup generated by the elements x
yi1
1 we have that the

subgroup these elements generate is 2-transitive and therefore primitive. Since this
subgroup contains the 3-cycle x1 it follows that these elements generate the whole
of the alternating group. It is easy to see that no automorphism simultaneously
inverts both of these elements so any permutations that can be used to extend this
to a Beauville structure gives a non-strongly real Beauville structure. Consider the
permutations

x2 := (5, 4, 3, 2, 1) and y2 := (3, 4, 5, 6, . . . , n).

We have that their product is the (n − 2)-cycle x2y2 = (1, 6, . . . , n, 3, 2) by direct

calculation. By considering the subgroup generated by the elements x
yi2
2 we have that

the subgroup these elements generate is 2-transitive and therefore primitive. Since
this subgroup contains the double-transposition [x2, y2] = (1, 5)(3, n) it follows that
these elements generate the whole of the alternating group. We therefore have a
non-strongly real Beauville group.

Next, suppose n ≥ 8 is even. Let

x1 := (1, 2)(3, 4) and y1 := (2, 3, 4, . . . , n).
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We have that their product is the (n − 1)-cycle x1y1 = (1, 3, 5, . . . , n, 2) by direct

calculation. By considering the subgroup generated by the elements x
yi1
1 we have that

the subgroup these elements generate is 2-transitive and therefore primitive. Since
this subgroup contains the double-transposition x1 it follows that these elements
generate the whole of the alternating group. It is easy to see that no automorphism
simultaneously inverts both of these elements so any permutations that can be used
to extend this to a Beauville structure gives a non-strongly real Beauville structure.

Finally, let

x2 := (1, 2, 3)(4, 5, . . . , n) and y2 := (5, 4, 3, 2, 1).

We have that their product is the (n − 3)-cycle x2y2 = (3, 5, . . . , n). By consider-

ing the subgroup generated by the elements y
xi
2

2 we have that the subgroup these
elements generate is 2-transitive and therefore primitive. Since this subgroup con-
tains the double transposition [x2, y

2
2 ] = (2, 5)(3, n) it follows that these elements

generate the whole of the alternating group. We therefore have a non-strongly real
Beauville group.

The case of A6 is complicated by the existence of exceptional outer automor-
phisms but despite this can easily be handled separately. �

Further examples are given by the following.

Lemma 2.2. None of the Suzuki groups 2B2(22n+1) are purely (non-)strongly real
Beauville groups.

Proof. The Beauville structures constructed by Fuertes and Jones in [9, Theorem
6.2] are non-strongly real since they take y1 as having order 4 and no automor-
phism maps such elements to their inverses in these groups. Strongly real Beauville
structures for these groups were constructed by the author in [5]. �

Lemma 2.3. Aside from the Mathieu groups M11 and M23 none of the sporadic
simple groups are purely (non-)strongly real Beauville groups.

Proof. Aside from M11 and M23, strongly real Beauville structures for these groups
were constructed by the author in [4]. Non-strongly real Beauville structures are
easily obtained computationally and with character theory, the more difficult cases
being easily dealt with thanks to the existence of elements that cannot be sent
to their inverses by any automorphism at all such as elements of order 71 in the
monster group M and elements of order 47 in the baby monster group B. �

We will return to the cases of M11 and M23 in Section 4 since they are genuine
exceptions to the above.

It is clear that numerous further examples can be constructed from the above
using direct products.

3. Purely Strongly Real Beauville Groups

Firstly, the following observation has been made elsewhere in the literature many
times and provides infinitely many purely strongly real Beauville groups.

Lemma 3.1. A finite abelian group is a strongly real Beauville group if and only
if it is a purely strongly real Beaville group.

Proof. In any abelian group the homomorphism x 7→ −x inverts every element. �

Abelian Beauville groups were first constructed by Catanese in [3] and classified
by Bauer, Catanese and Grunewald in [2]. For non-soluble examples, we have the
following infinite supply.
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Proposition 3.2. Let q > 2 be a power of 2 and let k be a positive integer. If
(q, k) 6= (4, 1), then the characteristically simple group L2(q)k is a purely strongly
real Beaville group whenever it is 2-generated.

Proof. In [13] MacBeath observed that any generating pair for the groups L2(q)
can be inverted by an inner automorphism when q is even and since these groups
have only one class of involutions, the only elements of even order. �

We remark that the exception (q, k) = (4, 1) is a genuine exception thanks to the
isomorphism A5

∼= L2(4) and this group is well known to not be a Beauville group.
For each prime p ≥ 5 we can also construct infinitely many (new) non-abelian

nilpotent examples as follows.

Proposition 3.3. If p ≥ 5 is a prime and n ≥ r ≥ 1 are integers, then the group

G := 〈x, y, z |xpn , ypn , zpr [x, y] = z, [x, z], [y, z]〉
is a purely strongly real Beauville group.

Proof. Let {(x1, y1), (x2, y2)} be a Beauville structure of G. We first note that
Aut(G) acts transitively on the non-central elements of G of a given order and a
generating pairs must consist of two element of order pn, so without loss we may
assume that x1 = x. Similarly CAut(G)(x) acts transitively the elements x can

generate with so without loss we may also assume that y1 = y and that φ ∈Aut(G)
acts by xφ = x−1 and yφ = y−1 (so we can take the element g1 of Definition 1.4 to
be trivial).

Observe the following. For any element g ∈ G\Φ(G) we have that its conjugates
are gG = {gzi | i = 0, . . . , pr − 1}. Every element of this group can be written in
the form xiyjzk for some 0 ≤ i, j ≤ pn − 1 and 0 ≤ k ≤ pr − 1, so we have
that x2 = xi1yj1zk1 and y2 = xi2yj2zk2 for some 1 ≤ i1, i2, j1, j2 ≤ pn − 1 and
0 ≤ k1, k2 ≤ pr − 1. Notice that if these are chosen so that i1 6= j1, i2 6= j2,
i1 + i2 6= j1 + j2 and o(x2) = o(y2) = pn, then these elements provide a Beauville
structure and since p ≥ 5 finding such integers is straightforward. Moreover

(xiyjzk)φ = x−iy−jzk and (xiyjzk)−1 = x−iy−jz−k−ij

We also have that for any 0 ≤ a, b ≤ pn − 1

(x−iy−jzk)x
ayb = x−iy−jzk+bi−aj .

It follows that to have (xφ2 )x
ayb = x−12 and (yφ2 )x

ayb = y−12 we must have that

bi1 − aj1 ≡ −2k1 − ij (mod pr) and bi2 − aj2 ≡ −2k2 − ij (mod pr).

If the values of i1, i2, j1, j2, k1 and k2 are chosen so x2 and y2 generate the group
and the conjugacy condition is satisfied, then values of a and b satisfying these
equations can be found if j2i1 6≡ j1i2 (mod p). We claim that if j2i1 ≡ j1i2 (mod
p), then x2 and y2 do not generate the group. Note that under this condition we
have that

(xi1yj1)i2 = xi1i2yj1i2zk = xi1i2yj2i1zk

for some k but we also have that

(xi2yj2)i1 = xi1i2yj2i1zk
′

for some k′ in other words y2 ∈ 〈x2, z〉 which is a proper subgroup. �

We remark that strongly real Beauville p-groups have proved somewhat difficult
to construct the only previously known examples being given in [6, 7, 10, 11]. The
above provides infinitely many further new examples and does so for each prime
p ≥ 5.
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Clearly Proposition 3.2, Lemma 3.1 and Proposition 3.3 can be combined to
produce infinitely many other examples like L2(8) × C2

5 but it is not clear what
other examples can arise.

Problem 3.4. Find other examples of purely strongly real Beauville groups.

In particular, we have the following question.

Question 3.5. Do there exist purely strongly real Beauville 2-groups and 3-groups.

In the opinion of the author it seems likely that 2-generated 2-groups are more
likely to be purely strongly real Beauville groups: there is a general philosophy
in the study of p-groups that ‘the automorphism group of a p-group is typically
a p-group’ thanks to the results of Helleloid and Martin [12]. In particular, if p is
odd, then typically no automorphism like the φ in of Definition 1.4 exists since such
an automorphism must necessarily have even order. On the other side of the coin
however, most of their results give examples with large numbers of generators and
examples that are 2-generated seem difficult to construct.

4. Purely non-strongly Beauville groups

What about purely non-strongly real Beauville groups? In [4, Lemma 2.2] the
author shows, in the terminology defined here, that the Mathieu groups M11 and
M23 are purely non-strongly real Beauville groups, indeed the real content of [5,
Conjecture 1] is that among the non-abelian finite simple groups these are really
the only ones. For an infinite supply of examples we have the following.

Proposition 4.1. If G and H are Beauville groups of coprime order, such that G
is a purely non-strongly real Beauville group, then G ×H is a purely non-strongly
real Beauville group.

Proof. Let {(x1, y1), (x2, y2)} be a Beauville structure forG and let {(u1, v1), (u2, v2)}
be a Beauville structure for H. Since |G| and |H| are coprime it follows that

{((x1, u1), (y1, v1)), ((x2, u2), (y2, v2))}
is a Beauville structure for G × H. Since |G| is coprime to |H| it follows that G
and H are not isomorphic and so Aut(G × H)=Aut(G)×Aut(H). Since elements
of Aut(G) cannot be used to provide a strongly real Beauville structure, it follows
that none of the Beauville structures of G×H are strongly real. �

Corollary 4.2. There exist infinitely many purely non-strongly real Beauville groups.

Proof. As noted above, M11 is a purely non-strongly real Beauville group. In Propo-
sition 4.1 we can therefore take G to be M11. Since |M11| = 11× 5× 32× 24 we can
take H to be any Beauville group has order coprime to 11, 5, 3 and 2. Infinitely
many examples of such groups are constructed in [1, 7, 10, 11, 14] as well as in
Proposition 3.3. �

The next example shows that Proposition 4.1 is far from being the best possible.

Example 4.3. The group M11 × A5 is easily seen to be a Beauville group as the
elements

x1 := (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)(12, 13, 14, 15, 16),

y1 := (1, 5, 3, 4, 10, 2, 8, 9, 11, 6, 7)(12, 14, 15, 13, 16)

along with

x2 := (1, 2, 9, 10, 6)(3, 11, 5, 4, 7)(12, 13, 14, 15, 16),

y2 := (1, 4, 8, 11, 3)(2, 9, 7, 5, 6)(12, 14, 15, 13, 16)
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provide a Beauville structure of type ((55,55,55),(5,5,5)). The lack of automor-
phisms that make M11 a purely non-strongly real Beauville group clearly also make
M11×A5 a purely non-strongly real Beauville group. Note that every prime dividing
the order A5 also divides the order of M11 and that A5 not even a Beauville group.

Question 4.4. What is the most general form of Proposition 4.1?

The author is not aware of any nilpotent or even soluble examples. As previously
mentioned ‘the automorphism group of a p-group is typically a p-group’. Among
the groups of order pn for small n few examples of 2-generated groups with an auto-
morphism group of odd order exist and the few that do appear to not be Beauville
groups, suggesting that such examples are actually quite difficult to construct.

Question 4.5. Do there exist any nilpotent or soluble purely non-strongly real
Beauville groups?

This would be immediately answered by combining Proposition 4.1 with an an-
swer to the following.

Question 4.6. Do there exist Beauville p-groups whose automorphism groups have
odd order?
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[10] Ş. Gül, A note on strongly real Beauville p-groups, Monatsh. Math. (2017)
doi:10.1007/s00605-017-1034-1 arXiv:1607.08907
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