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Abstract

In this paper, we show a “direct” equivalence between certain authen-
tication codes and robust secret sharing schemes. It was previously known
that authentication codes and robust secret sharing schemes are closely
related to similar types of designs, but direct equivalences had not been
considered in the literature. Our new equivalences motivate the consid-
eration of a certain “key-substitution attack.” We study this attack and
analyze it in the setting of “dual authentication codes.” We also show how
this viewpoint provides a nice way to prove properties and generalizations
of some known constructions.

1 Introduction

We begin by giving some relevant definitions for authentication codes and thresh-
old schemes. We should emphasize that we are only considering unconditionally
secure cryptographic protocols in this paper.

1.1 Authentication Codes

We follow Simmons’ model for authentication [12]. A key K determines an
encoding rule eK , which is a possibly randomized mapping eK : S → M. Ele-
ments in S are called sources and elements of M are messages. In general, we

∗This research was supported by a “Research in Pairs” grant from the London Mathemat-
ical Society.
†D.R. Stinson’s research is supported by NSERC discovery grant RGPIN-03882.
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view eK(s) as a set of messages in the case that encoding is randomized (this is
often called authentication with splitting). The key K is chosen from a keyspace
K. The key and the source can be treated as independent random variables.
If |eK(s)| = c for all s ∈ S and all K ∈ K, the code is called a c-splitting
authentication code.

Given a key K and a message m, at most one source should be “possible.”
That is, for every key K, we require that eK(s) ∩ eK(s′) = ∅ if s 6= s′. This
ensures that the receiver, who has the key K and a message m ∈ eK(s), can
uniquely determine the source s.

For any key K, denote

µ(K) =
⋃

s

eK(s).

The set µ(K) consists of all the messages that are valid encodings of a source
under key K.

Also, for any message m, denote

κ(m) = {K : m ∈ µ(K)}.
The set κ(m) consists of all the keys for which m is a valid encoding of some
source.

The encoding matrix of an authentication code is a matrix E in which the
rows are indexed by the keys in K and the columns are indexed by the sources in
S. The entry E(k, s) is simply the set (of messages) eK(s). The entries E(k, s)
in the encoding matrix are singletons if and only if the code has no splitting,
i.e., c = 1.

We are primarily interested in authentication codes having perfect secrecy,
i.e., codes having the property that a message reveals no information about
the source to an adversary who does not know the key. We also often want
authentication codes that are secure against both message-substitution and key-
substitution attacks. These attacks are defined as follows.

In a message-substitution attack (also called a substitution attack), the ad-
versary sees a message m and replaces it with a message m′ 6= m. The adversary
wins if m′ ∈ eK(s′) and m ∈ eK(s), where K is the (unknown) secret key and
s′ 6= s. This is often just called a substitution attack ; these types of attacks
have been considered for many years.

In a key-substitution attack, the adversary sees a key K and replaces it with
a key K ′ 6= K. The adversary wins if m ∈ eK(s) and m ∈ eK′(s′), where
m is the (unknown) message and s′ 6= s. This is perhaps a less natural type
of attack to consider than a message-substitution attack. In fact, we are not
aware of any previous study of unconditionally secure authentication codes that
considers key-substitution attacks. However, we should note that a similar
attack has been studied in the setting of systematic algebraic manipulation
detection (AMD) codes; see [3].

There is another attack that is often studied for authentication codes, namely,
an impersonation attack. In this attack, the adversary chooses a message, with-
out seeing a “previous” message, hoping that it is an encoding of some source
under the (unknown) key K.
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The success probability of an attack (impersonation, message-substitution or
key-substitution) is the probability that the adversary wins the corresponding
“game.” This probability is computed over a random choice of key, source, and
message encoding (if encoding of messages is randomized, i.e., in the case of a
code with splitting) according to the probability distributions specified on them.
Throughout this paper, we assume that the probability distributions defined on
the keys and message encodings are uniform. That is, Prob[K] = 1/b for all
keys K ∈ K, and in a c-splitting code, for a given key K ∈ K and source s ∈ S,
we have Prob[m] = 1/c for all m ∈ eK(s).

Source probability distributions are often (but not always) assumed to be
uniform. Also, in all of the attacks we study, we assume that a key is used to
encode only one message.

The adversary’s optimal success probability for an impersonation attack
is often denoted by Pd0

and their optimal success probability for a message-
substitution attack is denoted by Pd1

. For c-splitting authentication codes, the
following bounds are known.

Theorem 1.1. [12, 4, 1] Suppose a c-splitting authentication code for k sources
has v messages. Then Pd0 ≥ ck/v and Pd1 ≥ c(k − 1)/(v − 1).

For a code without splitting (i.e., c = 1), the bounds obtained from Theorem
1.1 are Pd0 ≥ k/v and Pd1 ≥ (k−1)/(v−1). This bound on Pd1 was first proved
by Massey [7].

The following two results will be used several times later in the paper. They
do not assume equiprobable sources.

Lemma 1.2. Suppose a c-splitting authentication code for k sources has v mes-
sages, b equiprobable keys and equiprobable message encoding. Then Pd0 = ck/v
if and only if |κ(m)| = bck/v for all messages m.

Proof. Let K be the key that was chosen by the sender/receiver. The message
m chosen by the attacker will be accepted as valid if and only if K ∈ κ(m). Since
there are b possible keys, the choice of m will be a successful impersonation with
probability |κ(m)|/b.

Define
A = {(K,m) : K ∈ κ(m)}.

Clearly

|A| =
∑

m∈M
|κ(m)|.

However, we also have

|A| =
∑

K∈K
|µ(K)| = bck.

Therefore,

max{|κ(m)| : m ∈M} ≥ bck

v
,

and equality occurs if and only if |κ(m)| = bck/v for all messages m.
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The adversary’s optimal attack is to choose m so that |κ(m)| is maximized.
Hence, the maximum success probability of an impersonation attack is at least
ck/v, and equality occurs if and only if |κ(m)| = bck/v for all messages m.

Theorem 1.3. Suppose a c-splitting authentication code for k sources has v
messages, b equiprobable keys and equiprobable message encoding. Consider the
following three conditions:

1. Pd0 = ck/v;

2. the code achieves perfect secrecy;

3. within each column of the encoding matrix, every message occurs the same
number of times.

Then the code satisfies conditions 1. and 2. if and only if it satisfies condition
3.

Proof. For any s ∈ S and m ∈M, define

κ(m, s) = {K : m ∈ eK(s)}.

Thus κ(m, s) contains the keys for which m is a valid encoding of s. We observe
that

Prob[m | s] =
|{K : m ∈ eK(s)}|

b
=
|κ(m, s)|

b
. (1)

Suppose the code satisfies 2. Perfect secrecy is achieved if and only if

Prob[s | m] = Prob[s]

for all s ∈ S and all m ∈M. By Bayes’ Theorem, this is equivalent to proving

Prob[m | s] = Prob[m] (2)

for all s ∈ S and all m ∈M.
For a given message m, equations (1) and (2) imply that |κ(m, s1)| =

|κ(m, s2)| for all sources s1, s2.
It is clear that

κ(m) =
⋃

s∈S
κ(m, s),

where the sets κ(m, s) (s ∈ S) are disjoint. Therefore

|κ(m)| =
∑

s∈S
|κ(m, s)| = k × |κ(m, s)| (3)

for any fixed source s ∈ S.
Now, assume additionally that the code satisfies condition 1. From Lemma

1.2, we have |κ(m)| = bck/v. Hence, it follows that

|κ(m, s)| = bc

v
(4)
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for every m ∈M, s ∈ S. Therefore, condition 3. holds.

Conversely, suppose condition 3. holds. Let s ∈ S. Then |κ(m1, s)| =
|κ(m2, s)| for all m1,m2 ∈M. We have

∑

m∈M
|κ(m, s)| = bc,

since there are b rows in the encoding matrix and each cell contains c messages.
Therefore, equation (4) holds for all s ∈ S and all m ∈M. Hence, from (1),

Prob[m | s] =
bc
v

b
=
c

v

for all s ∈ S and all m ∈M. Then

Prob[m] =
∑

s∈S
(Prob[m | s]× Prob[s])

=
∑

s∈S

( c
v
× Prob[s]

)

=
c

v
,

so Prob[m | s] = Prob[m] for all s ∈ S and m ∈ M. Therefore, equation (2)
holds and we have perfect secrecy.

To see that Pd0
= ck/v, we use equation (3), which is satisfied because we

have perfect secrecy. Since (4) holds , we have

|κ(m)| = k × bc

v
=
bck

v

for all m ∈M. Then Pd0
= ck/v from Lemma 1.2.

1.2 Threshold Schemes

A (2, 2)-threshold scheme enables a secret s to be “split” into two shares v1 and
v2 in such a way that

1. v1 and v2 uniquely determine s via a reconstruction function. We express
this as Reconstruct(v1, v2) = s.

2. No individual share yields any information about the secret. That is,

Prob[s | v1] = Prob[s | v2] = Prob[s].

More generally, a (k, n)-threshold scheme enables a secret s to be split into
n shares in such a way that any k shares permit the secret to be reconstructed,
but no set of k − 1 or fewer shares yield any information about the secret.

In a robust (2, 2)-threshold scheme, we consider the scenario where one player
may modify their share, hoping that Reconstruct will then yield an incorrect
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secret. So we consider a setting where Reconstruct either returns a secret or
⊥, where the latter indicates that no secret can be reconstructed from the two
given shares. Suppose that the first player, P1, alters their share as v1 → v′1 (P1

does not have any information about the value of the other share, v2). Suppose
Reconstruct(v1, v2) = s. Then P1 wins this deception game if

Reconstruct(v′1, v2) = s′

where s′ 6= s. P1 loses the game if

Reconstruct(v′1, v2) = s or Reconstruct(v′1, v2) = ⊥ .

Similarly, if P2 alters their share as v2 → v′2, then they win the deception game
if Reconstruct(v1, v

′
2) = s′ where s′ 6= s.

A robust (2, 2)-threshold scheme is ε-secure if no strategy by P1 or P2 will
allow them to win the deception game with probability exceeding ε.

1.3 Background and Our Contributions

There has been previous work, for example in [9, 8], discussing constructions for
“optimal” authentication codes and robust (threshold) secret sharing schemes
using combinatorial structures such as BIBDs, difference sets, external BIBDs
(EBIBDs), external difference families (EDFs) and splitting BIBDs. In the con-
text of authentication codes, “optimal” means that the deception probabilities
are as small as possible and the number of encoding rules (or keys) is also as
small as possible. For a robust threshold scheme, “optimal” means that the
deception probabilities meet a specified bound that is expressed in terms of the
number of possible shares and the number of possible secrets. Additionally,
[9, 8] proved some partial converses showing that optimal authentication codes
and robust secret sharing schemes imply the existence of some of the above-
mentioned combinatorial structures. Without going into details, the following
are the main results along this line:

• In [9] it is shown that a robust threshold scheme can be constructed from
an EDF with λ = 1. (This construction incorporates a Shamir threshold
scheme as an ingredient.) Conversely, certain robust threshold schemes
give rise to certain EBIBDs.

• In [8] it is shown that a robust threshold scheme can be constructed from
a difference set. (This construction also incorporates a Shamir threshold
scheme as an ingredient.) Conversely, certain robust threshold schemes
give rise to certain SBIBDs.

• In [9], a construction is given for splitting authentication codes from EDFs
with λ = 1. This paper also constructs certain authentication codes from
splitting BIBDs with λ = 1, as well as proving a converse result.
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The above results suggest that there are connections between authentication
codes and robust secret sharing schemes, as they are closely related to similar
(and sometimes identical) types of designs. For example, the combinatorial
designs generated by EDFs (which include difference sets as a special case) can
be used to construct both robust threshold schemes and authentication codes.

In this paper, we show a “direct” equivalence between certain authentication
codes and robust secret sharing schemes. We also study a key-substitution
attack for authentication codes and interpret it in light of what we term “dual
authentication codes.”

Robust (k, n)-threshold schemes were introduced by Tompa and Woll [14].
They have been constructed in the past by a two-step process: First, the secret
is “encoded” using a suitable combinatorial structure such as a difference set
[8], EDF [9] or AMD code [3]. Second, the encoded secret is shared using a
traditional Shamir threshold scheme. However, if we consider a (2, 2)-threshold
scheme, then the second step is not required and consequently we can show a
direct equivalence between authentication codes and (2, 2)-threshold schemes.

The rest of this paper is organized as follows. In Section 2, we prove our
main equivalence result. Constructions for authentication codes that satisfy the
necessary hypotheses are studied in Section 3. The notion of “dual authenti-
cation codes” is introduced and explored in Section 4. Finally, some closing
remarks are given in Section 5.

2 Equivalences

In the next subsections, we show the equivalence of certain authentication codes
and robust (2, 2)-threshold schemes.

2.1 Threshold Scheme to Authentication Code

Given an ε-secure robust (2, 2)-threshold scheme, we construct an authentication
code. This is somewhat similar to the the construction used by Kurosawa,
Obana and Ogata in [6, Theorem 15].

For any ordered pair of shares (v1, v2) such that Reconstruct(v1, v2) = s,
define v2 ∈ ev1(s). First, we note that ev1(s) 6= ∅ for all v1 and all s. This
holds because the share v1 does not provide any information about the secret.
Hence, for all choices of v1 and s, there must be at least one value v2 such that
Reconstruct(v1, v2) = s.

The probability distribution on the sources in the authentication code should
be the same as the probability distribution on the shares of the threshold scheme.
Also, note the following correspondences:

threshold scheme authentication code
source s ←→ secret s
share v1 ←→ key K
share v2 ←→ message m.
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We show that the resulting authentication scheme satisfies various properties
now.

Message-substitution attack. Suppose an adversary replaces m ∈ eK(s)
with m′ 6= m in the authentication code. This corresponds to modifying share
v2 (the second share) from m to m′ in the robust secret sharing scheme. Because
the threshold scheme is robust, we know that

Prob[Reconstruct(K,m′) = s′ 6= s] ≤ ε.

In other words,
Prob[m′ ∈ eK(s′) and s′ 6= s] ≤ ε.

Therefore, the probability of a successful message-substitution attack is at most
ε.

Key-substitution attack. Suppose an adversary replaces K with K ′ 6= K
in the authentication code, where m ∈ eK(s). This corresponds to modifying
share v1 (the first share) from K to K ′ in the robust secret sharing scheme.
Because the threshold scheme is robust, we know that

Prob[Reconstruct(K ′,m) = s′ 6= s] ≤ ε.

In other words,
Prob[m ∈ eK′(s′) and s′ 6= s] ≤ ε.

Therefore, the probability of a successful key-substitution attack is at most ε.

Perfect Secrecy. The threshold scheme has the property that one share yields
no information about the value of the secret. Therefore, in particular,

Prob[s | v2] = Prob[s].

Suppose the share v2 is fixed but we have no information about the share v1.
Then we have no information about the secret s. In the corresponding authenti-
cation code, this means that the message m = v2 provides no information about
the source s when the key K = v1 is not known, so we have perfect secrecy.

It is also possible to construct authentication codes with similar properties
from any robust (k, n)-threshold scheme with k ≥ 2. For example, see [8]. The
idea is to fix shares for the first k−2 players, say, by choosing some (k−2)-tuple
of shares that occurs with probability greater than 0. Consider the subset of
distribution rules such that the first k − 2 shares take on the specified values.
Retain the shares for the next two players, but throw away the shares that
would be given to the last n − k players. This gives rise to a (2, 2)-threshold
scheme, which can then be used to construct an authentication code using the
above-described technique.
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2.2 Authentication Code to Threshold Scheme

The construction in the previous subsection can easily be reversed. Now we
start with an authentication code having perfect secrecy and we assume that
message-substitution and key-substitution attacks have success probability at
most ε. We construct a (2, 2)-threshold scheme as follows: shares for P1 are
keys in the authentication code, shares for P2 are messages in the authentication
code, and secrets are sources in the authentication code. Note that P1 and P2

have shares of the same size if and only if the number of keys is the same as the
number of messages (in the authentication code).

For every m ∈ eK(s), construct a distribution rule (K,m; s), i.e., v1 = K,
v2 = m and

Reconstruct(v1, v2) = Reconstruct(K,m) = s.

We need to show that the resulting set of distribution rules defines an ε-secure
(2, 2)-threshold scheme.

Secret reconstruction. Suppose that we have two distribution rules (K,m; s)
and (K,m; s′) with s′ 6= s. Then m ∈ eK(s)∩eK(s′) in the authentication code,
which is not allowed. Thus, two shares determine at most one secret.

Information revealed by one share. We want to prove that

Prob[s | v1] = Prob[s | v2] = Prob[s].

If v1 = K is given, then this yields no information about s because K and s are
independent in the authentication code. If v2 = m is given, then this yields no
information about s because the authentication code has perfect secrecy.

Modifying v1. Suppose P1 replaces their share v1 = K with v′1 = K ′ 6= K.
This corresponds to a key-substitution attack in the authentication code. We
know that

Prob[m ∈ eK′(s′) and s′ 6= s] ≤ ε,
so

Prob[Reconstruct(K ′,m) = s′ 6= s] ≤ ε.

Modifying v2. Suppose P2 replaces their share v2 = m with v′2 = m′ 6= m.
This corresponds to a message-substitution attack in the authentication code.
We know that

Prob[m′ ∈ eK(s′) and s′ 6= s] ≤ ε,
so

Prob[Reconstruct(K,m′) = s′ 6= s] ≤ ε.

2.3 Main Theorem

Summarizing the results in the two previous subsections, we have our main
equivalence theorem. For simplicity, we assume equiprobable distributions of
sources (in the authentication code) and secrets (in the threshold scheme).
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Theorem 2.1. There exists an authentication code with perfect secrecy for k
uniformly distributed sources that is ε-secure against message-substitution and
key-substitution attacks if and only if there exists an ε-secure (2, 2)-threshold
scheme for k uniformly distributed secrets.

3 Combinatorial Constructions

In this section, we look at various constructions for authentication codes that
are based on combinatorial designs, paying particular attention to the properties
(namely, perfect secrecy and key-substitution attacks) that are relevant for the
construction of robust (2, 2)-threshold schemes using Theorem 2.1. Throughout
this section, we assume standard design-theoretic definitions that can be found,
for example, in [2].

3.1 Symmetric BIBDs

First, we give a simple construction using symmetric BIBDs (i.e., SBIBDs).
This is a slight generalization of constructions given in [9, 8] since we do not
require that the SBIBD is generated from a difference set.

Suppose that (X,B) is a (v, k, λ)-SBIBD (so λ(v − 1) = k(k − 1)). Suppose
that X = {xi : 1 ≤ i ≤ v} is the set of points in the design and B = {Bj :
1 ≤ j ≤ v} is the set of blocks in the design. We can order each block Bj to
obtain a k-tuple Cj = (c1,j , . . . , ck,j) in such a way that the following property
is satisfied:

|{j : c`,j} = xi| = 1

for every i, 1 ≤ i ≤ v, and every `, 1 ≤ ` ≤ k. That is, we can write out the
ordered blocks Cj (1 ≤ j ≤ v) as the rows of a v by k array E in such a way
that every point occurs once in each column of the array E. Such an array is
known as a Youden square; see, for example, [2, §VI.65].

A Youden square can be constructed from any SBIBD by using systems of
distinct representatives. However, in the case where the SBIBD is generated
from a difference set in an abelian group G, the Youden square occurs automat-
ically if we arbitrarily order the base block and then generate the rest of the
(ordered) blocks by developing the base block through the group G.

Suppose we use E as an encoding matrix for an authentication code. Thus,
a key corresponds to a block in the design, or equivalently a row in E. The k
sources are the k columns in E and the messages are the v points in the design.
We assume that the sources are equiprobable.

It is not difficult to verify that this authentication code is (k − 1)/(v − 1)-
secure against message-substitution and key-substitution attacks (see the proof
of Theorem 3.3 for additional detail). It is also clear that this authentication
code provides perfect secrecy; this follows immediately from Theorem 1.3 using
the “Youden square” property of the authentication matrix. This construction
is in fact a special case of [9, Theorem 5.5], extended to include the perfect
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secrecy property by using an appropriate ordering of the blocks, as described
above.

Starting with this authentication code, we obtain from Theorem 2.1 an ε-
secure (2, 2)-threshold scheme for k equiprobable secrets, where ε = (k−1)/(v−
1). Summarizing, we have the following theorem.

Theorem 3.1. If there exists a (v, k, λ)-SBIBD, then there exists

1. an authentication code with perfect secrecy for k equiprobable sources that
is (k−1)/(v−1)-secure against message-substitution and key-substitution
attacks, and

2. a (k− 1)/(v− 1)-secure (2, 2)-threshold scheme for k equiprobable secrets,
in which the share sets for both players have size v.

Example 3.1. A (7, 3, 1)-SBIBD is just a projective plane of order 2, often
called the Fano plane. The seven blocks in the design can be obtained from the
base block {0, 1, 3} by developing it in the group Z7. After ordering the blocks
appropriately, we obtain the following Youden square.

s1 s2 s3
0 1 3
1 2 4
2 3 5
3 4 6
4 5 0
5 6 1
6 0 2

This Youden square is the encoding matrix for an authentication code with
perfect secrecy having Pd0 = 3/7 and Pd1 = 2/6 = 1/3. The success probability
of any key-substitution attack is also 1/3. For example, if K1 is replaced by
K2, then the attack succeeds if and only if m = 1. The probability that m = 1
(given that K1 is the key) is 1/3 because the sources are equiprobable.

The corresponding (2, 2)-threshold scheme is (1/3)-secure and has the fol-
lowing 21 distribution rules:

v1 v2 s
0 0 s1
1 1 s1
2 2 s1
3 3 s1
4 4 s1
5 5 s1
6 6 s1

v1 v2 s
0 1 s2
1 2 s2
2 3 s2
3 4 s2
4 5 s2
5 6 s2
6 0 s2

v1 v2 s
0 3 s3
1 4 s3
2 5 s3
3 6 s3
4 0 s3
5 1 s3
6 2 s3

Any deception carried out by P1 or P2 succeeds with probability 1/3. For
example, suppose v1 → v′1 = v1 + 1 mod 7. This deception will succeed if and
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only if s = s2. In this case, v2 = v1 +1 mod 7 and then Reconstruct(v′1, v2) = s1.
The success probability of this deception is Prob[s = s2] = 1/3 because the
sources are equiprobable.

We should note that the authentication codes and robust threshold schemes
obtained from Theorem 3.1 are optimal in various senses. In the case of the
authentication code, the impersonation and message-substitution attacks have
success probability that is as small as possible, according to Massey’s bounds
[7]. Also, the number of encoding rules (or keys) is as small as possible, from
[11, Theorem 2.1].

For the threshold schemes, we have v possible shares, k possible secrets, and
the scheme is ε-secure where ε = (k−1)/(v−1). This meets the bound proven in
[8, Corollary 3.3]. In fact, as a result of our discussion above, we have shown the
following strong characterization of these “optimal” (2, 2)-threshold schemes.

Theorem 3.2. There exists a (v, k, λ)-SBIBD if and only if there exists a (k−
1)/(v − 1)-secure (2, 2)-threshold scheme for k equiprobable secrets.

3.2 BIBDs

More generally, we can use any BIBD (i.e, not necessarily a symmetric BIBD)
to construct an authentication code. It has also been shown that the resulting
authentication codes can provide perfect secrecy if obvious numerical conditions
are satisfied; for example, see [13, Theorem 6.4]. Here is a “classical” construc-
tion of authentication codes from BIBDs.

Theorem 3.3. Suppose there is a (v, b, r, k, λ)-BIBD where r ≡ 0 mod k. Then
there is an authentication code for k equiprobable sources, having v messages
and b equiprobable keys, which satisfies the following properties:

1. Pd0 = k/v and Pd1 = (k − 1)/(v − 1),

2. the code provides perfect secrecy, and

3. if r = k, then the optimal key-substitution attack has success probability
(k− 1)/(v− 1), and if λ = 1, then the optimal key-substitution attack has
success probability 1/k.

Proof. First, we order each block in such a way that each element occurs exactly
r/k times in each position. To do this, the technique used in the proof of [13,
Theorem 6.4] can be applied (the proof of [13, Theorem 6.4] assumed λ = 1, but
the method can be generalized easily to arbitrary λ). Then, Theorem 1.3 shows
that the resulting authentication code has perfect secrecy and Pd0 = k/v.

We now prove 3, which treats the special cases of (1) SBIBDs and (2) BIBDs
with λ = 1. First, we look at authentication codes derived from an SBIBD. The
encoding matrix has one occurrence of each message in each column. Suppose
we replace any key Ki with any other key Kj . There are exactly λ messages that
occur in both Ki and Kj , and each such message occurs in a different position
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in Ki and Kj . Thus the attack is successful if and only if the message m is one
of these λ messages. The sources are equiprobable, so the success probability is
λ/k = (k − 1)/(v − 1).

Suppose now that the code is derived from a BIBD with λ = 1. Suppose the
attacker replaces a key Ki with another key Kj . Observe that there is at most
one message that occurs in both Ki and Kj . If Ki and Kj contain no common
message, or if they contain a common message in the same column, the attack
will not succeed. Therefore the attacker should choose Kj so that Ki and Kj

contain a common message that occurs in different columns. Given a message m
in row Ki, there are r− r/k = r(k− 1)/k rows in which m occurs in a different
column than it does in Ki. Since λ = 1 and there are k messages in row Ki,
the number of rows Kj such that Ki and Kj contain a common message that
occurs in different columns is precisely kr(k − 1)/k = r(k − 1). The optimal
attack is to choose one of these r(k − 1) rows; the success probability is

r(k − 1)/k

r(k − 1)
=

1

k
.

Computing the success probability of a key-substitution attack is, in general,
more complicated, as blocks of a BIBD might intersect in different numbers of
points. There were two types of BIBDs considered in part 3 of Theorem 3.3.
Suppose we then construct a robust (2, 2)-threshold scheme from the authentica-
tion code using the transformation given in Section 2. The success of modifying
share v1 is quantified by the success of the key-substitution attack in the au-
thentication code setting, whereas the success of modifying share v2 is the same
as the success of the message-substitution attack in the authentication code set-
ting. In general, the success probabilities of the two share-modification attacks
will be different; however, if we start with an SBIBD, the probabilities are the
same. Theorem 3.1 is fact just the specialization of Theorem 3.3 to symmetric
BIBDs.

Applying Theorem 2.1, we have the following.

Theorem 3.4. If there exists a (v, k, 1)-BIBD, then there exists

1. an authentication code with perfect secrecy for k equiprobable sources that
is (1/k)-secure against message-substitution and key-substitution attacks,
and

2. a (1/k)-secure (2, 2)-threshold scheme for k equiprobable secrets.

Proof. We showed in Theorem 3.3 that the authentication code arising from a
(v, k, 1)-BIBD is (k−1)/(v−1)-secure against message-substitution attacks and
(1/k)-secure against key-substitution attacks. Since we have

k − 1

v − 1
≤ 1

k

if a (v, k, 1)-BIBD exists, the authentication code is (1/k)-secure against both
attacks. Then the stated result follows directly from Theorem 2.1.
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We note that the (2, 2)-threshold scheme arising from part 2. of Theorem
3.4 has share sets (for the two players) of different sizes, unless the BIBD is a
projective plane.

3.3 External difference families

A construction for splitting authentication codes using external difference fam-
ilies (or EDFs) was given in [9]. First, we define EDFs. Let G be an additive
abelian group of order n having identity 0. An (n, k, c, λ)-external difference
family is a set of k c-subsets of G, say D1, . . . , Dk, such that the following
multiset equation holds.

{x− y : x ∈ Di, y ∈ Dj , i 6= j} = λ(G \ {0}).

That is, when we look at the differences of elements from different c-subsets
in the EDF, we see every non-zero value occurring exactly λ times. Therefore,
a necessary condition for existence of an (n, k, c, λ)-EDF is that the following
equation holds:

λ(n− 1) = c2k(k − 1). (5)

The following theorem is a straightforward generalization of [9, Theorem
3.4], which only addressed the case λ = 1 and did not explicitly discuss key-
substitution attacks.

Theorem 3.5. Suppose there is an (n, k, c, λ)-EDF. Then there is a c-splitting
authentication code E for k equiprobable sources, having n messages and n
equiprobable keys, such that

1. the code provides perfect secrecy,

2. Pd0 = ck/n and Pd1 = c(k − 1)/(n− 1), and

3. the optimal key-substitution attack has success probability c(k−1)/(n−1).

Proof. We first specify an arbitrary ordering of the k c-subsets in the EDF and
then we develop the EDF through the abelian group G, maintaining the same
ordering (as is done in Example 3.2). This yields the encoding matrix of a c-
splitting authentication code. In each column of the encoding matrix, we see
exactly c occurrences of each element of G. From Theorem 1.3, we have perfect
secrecy and Pd0

= ck/n.
In a message-substitution attack, a message m is substituted with m′. There

are precisely λ rows of E that contain m and m′ in different c-subsets; these
are the keys for which the particular substitution will succeed. Also, there are
kc rows that contain m. Since the sources are equiprobable, the probability of
a successful message substitution is

λ

kc
=
c(k − 1)

n− 1
,

by applying (5).
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For a key-substitution attack, a key K is given to the attacker and the at-
tacker must choose a different key K ′. Because the encoding matrix is generated
from an EDF, there is a value d ∈ G, d 6= 0, such that eK′(s) = eK(s) + d for
all s. From this fact, it is not hard to see that

{m : m ∈ eK(s) ∩ eK′(s′), s 6= s′} = {m : m ∈ eK(s),m− d ∈ eK(s′), s 6= s′}.

Hence, there are exactly λ messages m such that the attack where K is replaced
by K ′ is successful. Since there are kc possible messages m ∈ µ(K), and these
values of m are equally likely, the key-substitution attack has success probability
λ/(kc) = c(k − 1)/(n− 1).

Observe that the values of Pd0 and Pd1 in Theorem 3.5 are optimal, by
Theorem 1.1. Also, we have shown that the optimal message-substitution and
key-substitution attacks in the above-constructed code have the same success
probability, namely c(k− 1)/(n− 1). Thus, if we apply Theorem 2.1, we obtain
a c(k − 1)/(n− 1)-secure (2, 2)-threshold scheme for k secrets.

Example 3.2. The three sets {1, 7, 11}, {4, 7, 9}, {5, 16, 17} form a (19, 3, 3, 3)-
EDF in Z19. We develop these sets modulo 19 to obtain the following encoding
matrix for a 3-splitting authentication code:

E =

s1 s2 s3
{1, 7, 11} {4, 6, 9} {5, 16, 17}
{2, 8, 12} {5, 7, 10} {6, 17, 18}
{3, 9, 13} {6, 8, 11} {7, 18, 0}
{4, 10, 14} {7, 9, 12} {8, 0, 1}
{5, 11, 15} {8, 10, 13} {9, 1, 2}
{6, 12, 16} {9, 11, 14} {10, 2, 3}
{7, 13, 17} {10, 12, 15} {11, 3, 4}
{8, 14, 18} {11, 13, 16} {12, 4, 5}
{9, 15, 0} {12, 14, 17} {13, 5, 6}
{10, 16, 1} {13, 15, 18} {14, 6, 7}
{11, 17, 2} {14, 16, 0} {15, 7, 8}
{12, 18, 3} {15, 17, 1} {16, 8, 9}
{13, 0, 4} {16, 18, 12} {17, 9, 10}
{14, 1, 5} {17, 0, 3} {18, 10, 11}
{15, 2, 6} {18, 1, 4} {0, 11, 12}
{16, 3, 7} {0, 2, 5} {1, 12, 13}
{17, 4, 8} {1, 2, 6} {2, 13, 14}
{18, 5, 9} {2, 4, 7} {3, 14, 15}
{0, 6, 10} {3, 5, 8} {4, 15, 16}

The rows of E are indexed by K0, . . . ,K18. The optimal success probability of
a message-substitution attack or a key-substitution attack is 1/6. The code also
has perfect secrecy.
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An EDF also gives rise to a robust (2, 2)-threshold scheme by applying The-
orem 2.1. The two share sets in the threshold scheme have the same size because
the authentication code derived from the EDF has the same number of messages
as keys.

Theorem 3.6. If there exists an (n, k, c, λ)-EDF, then there exists a c(k −
1)/(n−1)-secure (2, 2)-threshold scheme for k equiprobable secrets, in which the
share sets for both players have size n.

3.4 Splitting BIBDs

Splitting BIBDs were defined in [9]. A (v, u×c, 1)-splitting BIBD is a set system
consisting of a set X of v points and a set B of blocks of size uc, which satisfies
the following properties:

1. each block B can be partitioned into u subsets of size c, which are denoted
Bi, 1 ≤ i ≤ u, and

2. given any two distinct points x and y, there is a unique block B such that
x ∈ Bi and y ∈ Bj , where i 6= j.

We note that (v, u × 1, 1)-splitting BIBD is the same thing as a (v, u, 1)-
BIBD.

A (v, u× c, 1)-splitting BIBD has replication number r and b blocks, where

r =
v − 1

(u− 1)c
and b =

vr

uc
=

v(v − 1)

u(u− 1)c2
.

Of course r and b must be integers if a (v, u× c, 1)-splitting BIBD exists.
The following definition is new. A (v, u × c, 1)-splitting BIBD is equitably

ordered if the multiset equation

⋃

B∈B
Bi =

r

u
X

is satisfied for all i, 1 ≤ i ≤ u. If a splitting BIBD is equitably ordered, then it
yields an authentication code with perfect secrecy, from Theorem 1.3.

It is shown in [10] that a (v, u×c, 1)-splitting BIBD can be equitable ordered
only if

v ≡ 1 mod (u(u− 1)c2). (6)

In the case c = 1, where a splitting BIBD is just a BIBD, the condition (6)
is necessary and sufficient for the design to be equitably orderable. This fact
follows from Theorem 3.3. However, when c > 1, it is not known if (6) is a
sufficient condition for a splitting BIBD to be equitably orderable.

The following result is shown in [10].

Lemma 3.7. Suppose that a (v, u × c, 1)-splitting BIBD is generated by base
blocks over an abelian group of order v, and suppose every orbit of blocks has
size v. Then the splitting BIBD can be equitably ordered.
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Example 3.3. A (25, 3× 2, 1)-splitting BIBD is presented in [5]. It has points
in Z25 and it is generated from the base block

{{0, 1}, {2, 4}, {12, 20}}.

If we order the base block as

({0, 1}, {2, 4}, {12, 20})

and maintain this ordering as the block is developed, we obtain the blocks

({0, 1}, {2, 4}, {12, 20})
({1, 2}, {3, 5}, {13, 21})

...
({24, 0}, {1, 3}, {11, 19}).

This is an equitable ordering of the splitting BIBD.

It is also shown in [10] that some infinite families of splitting BIBDs that are
constructed recursively can be equitably ordered. Specifically, the cases u = 2
and (u, c) = (3, 2), (3, 3), (3, 4) and (4, 2) are almost completely solved (with a
small number of possible exceptions). See [10] for additional details.

Theorem 3.8. Suppose there is an equitably ordered (v, u×c, 1)-splitting BIBD.
Then there is a c-splitting authentication code E for u equiprobable sources,
having v messages and b = v(v − 1)/(u(u− 1)c2) keys, such that

1. the code provides perfect secrecy,

2. Pd0
= cu/v and Pd1

= c(u− 1)/(v − 1), and

3. the optimal key-substitution attack has success probability 1/(cu).

Proof. Part 1 follows from Theorem 1.3 because the splitting BIBD is equitably
ordered. Part 2 is shown in [9, Theorem 5.5]. Part 3 is proven as follows.
Suppose K is the given key. Fix any message m ∈ µ(K). Since the splitting
BIBD is equitably ordered, there are

r − r

u
=
v − 1

cu

keys K ′ such that m ∈ eK(s) ∩ eK′(s′) with s 6= s′. Since λ = 1, the number of
keys K ′ 6= K such that there exists a message m ∈ eK(s) ∩ eK′(s′) with s 6= s′

is

cu× v − 1

cu
= v − 1.

The attacker should replace K by one of these v − 1 keys. Since sources are
equiprobable, the key-substitution attack will succeed with probability

v−1
cu

v − 1
=

1

cu
.
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Applying Theorem 2.1, we have the following.

Theorem 3.9. If there exists an equitably ordered (v, u× c, 1)-splitting BIBD,
then there exists

1. a c-splitting authentication code with perfect secrecy for u equiprobable
sources that is (1/cu)-secure against message-substitution and key-substitution
attacks, and

2. a (1/cu)-secure (2, 2)-threshold scheme for k equiprobable secrets.

Proof. We showed in Theorem 3.8 that the authentication code arising from a
(v, u×c, 1)-splitting BIBD is c(u−1)/(v−1)-secure against message-substitution
attacks and (1/cu)-secure against key-substitution attacks. In the proof of The-
orem 3.8 it is shown that b ≥ v, so

v − 1 ≥ u(u− 1)c2,

or
c(u− 1)

v − 1
≤ 1

cu
.

Hence the authentication code is (1/cu)-secure against both attacks and the
stated result follows directly from Theorem 2.1.

4 Dual Authentication Codes

Suppose we have an authentication code with sources S, messages M, and
keyspace K. The encoding matrix is denoted by E. Then we can construct an-
other authentication code, which we call the dual code, by simply interchanging
the roles of messages and keys. Thus, the encoding matrix of the dual code is
the matrix F having entries

F (m, s) = {K ∈ K : m ∈ eK(s)},

where s ∈ S and m ∈ M . The keys in the dual code are the same as the
messages in the original code.

It is not hard to see that a key-substitution attack in an authentication code
is “equivalent” to a message-substitution attack in the dual code.

Theorem 4.1. A message-substitution attack in an authentication code is suc-
cessful if and only if the corresponding key-substitution attack is successful in
the dual authentication code.

Note that the probability of a “key” in the dual code is the same as the
probability of the corresponding message in the original code. Thus, keys in the
dual code will be equiprobable if and only if messages in the original code are
equiprobable. In all the examples we consider, we will assume that condition
3. of Theorem 1.3 holds. This will ensure that a code and its dual both have
equiprobable keys and messages.
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Theorem 4.1 provides an alternative method to compute success probabil-
ities of key-substitution attacks. We illustrate by reconsidering some of the
constructions from Section 3, where we computed these success probabilities
from first principles.

If we begin with an authentication code having an encoding matrix that
is a (v, k, λ)-SBIBD, then the rows of the encoding matrix of the dual code,
considered as sets, forms the dual design of the SBIBD. It is a classical result in
design theory that the dual design of an SBIBD is again a (v, k, λ)-SBIBD. Thus,
Theorem 4.1 provides a quick way to see that the optimal success probabilities
of the key-substitution and message-substitution attacks are identical in this
particular situation (as we showed previously in Theorem 3.1).

Example 4.1. We return to Example 3.1, where we constructed an authen-
tication code from a (7, 3, 1)-SBIBD. We display the encoding matrices of the
code and the dual code:

E =

s1 s2 s3
0 1 3
1 2 4
2 3 5
3 4 6
4 5 0
5 6 1
6 0 2

F =

s1 s2 s3
K0 K6 K4

K1 K0 K5

K2 K1 K6

K3 K2 K0

K4 K3 K1

K5 K4 K2

K6 K5 K3

The rows of E are indexed by K0, . . . ,K6 and the rows of F are indexed by
0, . . . , 6. The rows of F comprise the blocks of the dual (7, 3, 1)-SBIBD.

Suppose we start with an authentication code E arising from an EDF and
then we construct the dual authentication code, F . Let D1, . . . , Dk be the c-
subsets in the original EDF. It is not hard to see that the dual authentication
code F is generated from the EDF consisting of the k sets −D1, . . . ,−Dk. The
dual authentication code F satisfies the same properties as E because it is also
obtained from an (n, k, c, λ)-EDF. Thus we see immediately from Theorem 4.1
that the success probability of a key-substitution attack in E is c(k−1)/(n−1)
(as we showed previously in Theorem 3.5).

To illustrate, we present a small example.

Example 4.2. We have already noted in Example 3.2 that the three sets
{1, 7, 11}, {4, 7, 9}, {5, 16, 17} form a (19, 3, 3, 3)-EDF in Z19. We develop these
sets modulo 19 to obtain the following encoding matrices for a 3-splitting au-
thentication code and its dual code:

E =

s1 s2 s3
{1, 7, 11} {4, 6, 9} {5, 16, 17}
{2, 8, 12} {5, 7, 10} {6, 17, 18}
{3, 9, 13} {6, 8, 11} {7, 18, 0}

...
...

...
{0, 6, 10} {3, 5, 8} {4, 15, 16}
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F =

s1 s2 s3
{K8,K12,K18} {K10,K13,K15} {K2,K3,K14}
{K9,K13,K0} {K11,K14,K16} {K3,K4,K15}
{K10,K14,K1} {K12,K15,K17} {K4,K5,K16}

...
...

...
{K7,K11,K17} {K10,K13,K15} {K1,K2,K13}

The rows of E are indexed by K0, . . . ,K18 and the rows of F are indexed by
0, . . . , 18. We can view F as being generated from the EDF consisting of sets
{8, 12, 18}, {10, 13, 15}, {2, 3, 14}.

Here is another example, which makes use of a BIBD with λ = 1 that is not
a symmetric BIBD.

Example 4.3. We construct an authentication code from a (13, 3, 1)-BIBD.
This design has r = 6, and 6 ≡ 0 mod 3, so we can ensure that the corresponding
authentication code has perfect secrecy. The 26 blocks of the design can be
generated from the two base blocks {0, 1, 4} and {0, 2, 8} by developing them
modulo 13. The 26 by 3 encoding matrix E of the code is as follows:

s1 s2 s3
0 1 4
1 2 5
2 3 6
3 4 7
4 5 8
5 6 9
6 7 10
7 8 11
8 9 12
9 10 0

10 11 1
11 12 2
12 0 3

s1 s2 s3
0 1 8
1 2 9
2 3 10
3 4 11
4 5 12
5 6 0
6 7 1
7 8 2
8 9 3
9 10 4

10 11 5
11 12 6
12 0 7
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The dual code has the following 13 by 3 encoding matrix F :

s1 s2 s3
{K0,K13} {K12,K25} {K9,K18}
{K1,K14} {K0,K13} {K10,K19}
{K2,K15} {K1,K14} {K11,K20}
{K3,K16} {K2,K15} {K12,K21}
{K4,K17} {K3,K16} {K0,K22}
{K5,K18} {K4,K17} {K1,K23}
{K6,K19} {K5,K18} {K2,K24}
{K7,K20} {K6,K19} {K3,K25}
{K8,K21} {K7,K20} {K4,K13}
{K9,K22} {K8,K21} {K5,K14}
{K10,K23} {K9,K22} {K6,K15}
{K11,K24} {K10,K23} {K7,K16}
{K12,K25} {K11,K24} {K8,K17}

As can be seen, the dual code is 2-splitting. The rows of E are indexed by
K0, . . . ,K25 and the rows of F are indexed by 0, . . . , 12. Theorem 3.3 states that
the optimal success probability of a key-substitution attack for E is 1/3. This is
of course the same as the optimal success probability of a message-substitution
attack for F , by Theorem 4.1.

We now explore some additional properties relating authentication codes to
their duals.

Theorem 4.2. Suppose a c-splitting authentication code for u sources has b
equiprobable keys, equiprobable message encoding, v messages, perfect secrecy,
and Pd0 = cu/v. Then the dual authentication code is a (bc/v)-splitting authen-
tication code for u sources that has v equiprobable keys, equiprobable message
encoding, b messages, perfect secrecy, and Pd0

= cu/v.

Proof. The proof of Theorem 1.3 establishes that equation (4) holds, i.e., every
message m occurs bc/v times in each column s of the encoding matrix E. This
immediately implies that the dual code is (bc/v)-splitting. Therefore the dual
code is a (bc/v)-splitting authentication code for u sources having v equiprobable
keys and equiprobable message encoding. Each “message” in the dual code
occurs c times in each column s of F (where F is the the encoding matrix of
the dual code). Therefore, from Theorem 1.3, the dual code has perfect secrecy
and

Pd0
=

bc
v × u
b

=
cu

v
.

We note that the hypotheses of Theorem 4.2 are satisfied whenever we con-
struct an authentication code from an equitably ordered BIBD or splitting
BIBD.
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The authentication code presented in Example 4.3 satisfies the hypotheses
of Theorem 4.2 with v = 13, b = 26, u = 3, c = 1. Thus, the dual code is
2-splitting with perfect secrecy, each “message” Ki occurs once in each column
of F . The code and dual code both have Pd0

= 3/13.

5 Summary and Discussion

Our goal in this paper has been to develop some theory to better understand
various connections between authentication codes and threshold schemes, as
well as how certain combinatorial designs can be used to construct these cryp-
tographic objects. To this end, we have proven a simple direct equivalence of
certain authentication codes and (2, 2)-threshold schemes. Further, we have in-
troduced the notion of a key-substitution attack and observed that it is identical
to a message-substitution attack in a “dual authentication code.”

We have already mentioned that robust (k, n)-threshold schemes are usually
constructed by “combining” an algebraic object such as a difference set, EDF,
or AMD code with a Shamir threshold scheme. These objects all live in a finite
group and, consequently, the construction of the resulting threshold schemes is
algebraic. The main equivalence result we have proven (Theorem 2.1) is a purely
combinatorial result. It would be of interest to extend our equivalence theorem
in some way to handle robust (k, n)-threshold schemes in a strictly combinatorial
setting. There is a purely combinatorial analogue of Shamir threshold schemes—
namely, orthogonal arrays—so this is perhaps possible.
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