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Abstract

Aharoni and Berger conjectured that in every proper edge-colouring of a
bipartite multigraph by n colours with at least n + 1 edges of each colour
there is a rainbow matching using every colour. This conjecture generalizes
a longstanding problem of Brualdi and Stein about transversals in Latin
squares. Here an approximate version of the Aharoni-Berger Conjecture is
proved—it is shown that if there are at least n+ o(n) edges of each colour in
a proper n-edge-colouring of a bipartite multigraph then there is a rainbow
matching using every colour.
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1. Introduction

The research in this paper is motivated by some old problems about
transversals in Latin squares. Recall that a Latin square of order n is an
n× n array filled with n different symbols, where no symbol appears in the
same row or column more than once. A transversal in a Latin square of order
n is a set of n entries such that no two entries are in the same row, same
column, or have the same symbol. It is easy to see that not every Latin
square has a transversal (for example the unique 2 × 2 Latin square has no
transversal.) However, it is possible that every Latin square contains a large
partial transversal. Here, a partial transversal of size m means a set of m
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entries such that no two entries are in the same row, same column, or have
the same symbol. The study of transversals in Latin squares goes back to
Euler who studied orthogonal Latin squares i.e. order n Latin squares which
can be decomposed into n disjoint transversals. For a survey of transversals
in Latin squares, see [1].

There are several closely related, old, and difficult conjectures which say
that Latin squares should have large partial transversals. The first of these
is a conjecture of Ryser that every Latin square of odd order contains a
transversal [2]. Brualdi conjectured that every Latin square contains a partial
transversal of size n − 1 (see [3].) Stein independently made the stronger
conjecture that every n × n array filled with n symbols, each appearing
exactly n times contains a partial transversal of size n − 1 [4]. Because of
the similarity of the above two conjectures, the following is often referred to
as “the Brualdi-Stein Conjecture”.

Conjecture 1.1 (Brualdi and Stein, [3, 4]). Every n× n Latin square has a
partial transversal of size n− 1.

In this paper we will study a generalization of the Brualdi-Stein Con-
jecture to the setting of rainbow matchings in properly coloured bipartite
multigraphs. How are these related? There is a one-to-one correspondence
between n × n Latin squares and proper edge colourings of Kn,n with n
colours. Indeed consider a Latin square S whose set of symbols is {1, . . . , n}
with the i, j symbol Si,j. To S we associate an edge-colouring of Kn,n with
the colours {1, . . . , n}, by setting V (Kn,n) = {x1, . . . , xn, y1, . . . , yn} and let-
ting the edge between xi and yj receive colour Si,j. Notice that this colouring
is proper i.e. adjacent edges receive different colours. Recall that a matching
in a graph is a set of disjoint edges. We call a matching rainbow if all of
its edges have different colours. It is easy to see that partial transversals
in the Latin square S correspond to rainbow matchings in the correspond-
ing coloured Kn,n. Thus the Brualdi-Stein Conjecture is equivalent to the
statement that “in any proper n-edge-colouring of Kn,n, there is a rainbow
matching of size n − 1.” Once the conjecture is phrased in this form, one
begins to wonder whether large rainbow matchings should exist in more gen-
eral coloured graphs. Aharoni and Berger made the following generalization
of the Brualdi-Stein Conjecture.

Conjecture 1.2 (Aharoni and Berger, [5]). Let G be a properly edge-coloured
bipartite multigraph with n colours having at least n+ 1 edges of each colour.
Then G has a rainbow matching using every colour.
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This conjecture attracted a lot of attention since it was made. A most
natural way of attacking it is to consider graphs which have substantially
more than n + 1 edges in each colour, and show that such graphs have a
rainbow matching using every colour. For example an easy greedy argument
shows that every properly edge-coloured bipartite multigraph with n colours
and at least 2n edges of each colour has a rainbow matching of size n. Indeed,
if the largest matching M in such a graph had size ≤ n− 1, then one of the
2n edges of the unused colour would be disjoint from M , and we could get
a larger matching by adding it. This simple bound has been successively
improved by many authors. Aharoni, Charbit, and Howard [6] proved that
matchings of size b7n/4c are sufficient to guarantee a rainbow matching of
size n. Kotlar and Ziv [7] improved this to b5n/3c. The author proved that
φn + o(n) is sufficient, where φ ≈ 1.618 is the Golden Ratio [8]. Clemens
and Ehrenmüller [9] showed that 3n/2+o(n) is sufficient. The best currently
known bound is by Aharoni, Kotlar, and Ziv [10] who showed that having
3n/2 + 1 edges of each colour in an n-edge-coloured bipartite multigraph
guarantees a rainbow matching of size n.

Additionally, there are two results showing that just (1 + o(1))n edges in
each colour are enough if we place additional assumptions on G. A special
case of a theorem of Haggkvist and Johansson [11] (proved by probabilistic
methods) is that “every bipartite graph consisting of n edge-disjoint perfect
matchings of size n + o(n) edges has a rainbow matchings of size n”. The
author showed that the assumption that the matchings are perfect can be
removed i.e. every bipartite graph consisting of n edge-disjoint matchings of
size n+ o(n) edges has a rainbow matching of size n [8].

The goal of this paper is to improve on all previous asymptotic results by
showing that (1 + o(1))n edges are sufficient for all bipartite multigraphs.

Theorem 1.3. For all ε > 0, there exists an N0 = N0(ε) such that the
following holds. Let G be a properly coloured bipartite multigraph with n ≥ N0

colours and at least (1+ε)n edges of each colour. Then G contains a rainbow
matching using every colour.

The above theorem is the natural approximate version of Conjecture 1.2.
Now the interesting direction for further research is to try and improve the
second order term.

This theorem is proved by associating an auxiliary directed graph with G
and studying certain kinds of paths in the directed graph. Such an approach
was also taken in the author’s previous paper [8], and is substantially refined
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here. In the next section we give an overview of the various components of
the proof of Theorem 1.3.

2. Proof sketch

The proof of Theorem 1.3 is quite long and complicated. The basic idea
is to associate an auxiliary directed graph to G and then study properties
of this directed graph. The directed graph is studied by introducing five
new concepts—“switching paths”, “amidstness”, “reaching”, “bypassing”,
and “λ-components”—and then proving many lemmas about these concepts.
Since these concepts are quite foreign, we use this section to give a slow
and detailed introduction to all of them. In particular we motivate some of
these concepts by showing how they relate to the initial undirected graph in
Theorem 1.3.

This section and the main proof of Theorem 1.3 (Sections 3 and 4) can be
read completely independently of one another. All concepts that we introduce
in this section, will be reintroduced during the main proof of Theorem 1.3
(usually more concisely.)

2.1. Associating a directed graph

Let G be a properly coloured bipartite multigraph as in Theorem 1.3,
and let M be a rainbow matching of maximum size in G. Suppose for the
sake of contradiction that M doesn’t use every colour. Aside from [11], all
approaches to Conjecture 1.2 have involved performing local manipulations
on M to try and produce a larger rainbow matching. Here a “local manip-
ulation” on M means choosing some edge m ∈ M and e 6∈ M such that
M −m + e is another rainbow matching of the same size as M . The basic
idea of the proof is to perform a sequence of such local manipulations to
obtain a new matching M ′ of the same size as M such that there is some
edge which can be added to M ′ to give a larger rainbow matching. Since M
was originally chosen to have maximum size, this gives a contradiction.

Thus the main aim throughout the proof is to find a suitable sequence of
local manipulations. A key idea in [8] was that such sequences correspond
to paths in a suitable auxiliary directed graph. The following is the directed
graph which we will use.

Definition 2.1 (The directed graph DG,M). Let G have bipartition classes
X and Y , CG the set of colours in G, and CM the set of colours on M . Let
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X0 = X \ V (M). For any colour c ∈ CM , let mc be the colour c edge of M .
The digraph DG,M corresponding to G and M is defined as follows:

• The vertex set of DG,M is the set CG of colours of edges in G.

• For two colours u and v ∈ V (DG,M) there is a directed edge from u to
v in DG,M whenever there is a colour u edge from some x ∈ X to the
vertex mv ∩ Y .

a
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d

d
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h f
e

g

Y

X

M M M M M

Figure 1: A graph G, with a matching M , and the corresponding directed graph DG,M .
The thick vertical edges labelled “M” are the rainbow matching M . All other edges are
denoted by a – h to show which edge of DG,M corresponds to which edge of G. Notice
that the edge g of G doesn’t have a corresponding edge in DG,M—this is because g doesn’t
go through Y ∩ V (M).

See Figure 1 for a diagram of a bipartite multigraph and the corresponding
directed graph DG,M . Consider the directed path in the DG,M with edge
sequence (h, f, e) and vertex sequence (grey, yellow, pink, green). Notice
that deleting the yellow, pink, and green edges from M and replacing them
with h, f , and e produces a new rainbow matching of the same size as M .
In addition this new matching misses a different colour (green rather than
grey.) This demonstrates that directed paths in DG,M can give the kinds of
local manipulations we are interested in.

However not all directed paths in DG,M correspond to sequences of local
manipulations. For example in Figure 1, the directed path c, b, a doesn’t
work since the three edges c, b, a in G do not form a matching. In fact it is
easy to check that the only directed paths in Figure 1 which correspond to
the kinds of manipulations we’re interested in are sub-paths of (h, f, e).

The previous paragraphs show that while paths in DG,M can capture the
kind of local manipulations we’re looking for, not all paths do so. We will add
labels to the edges of DG,M in order to be able to describe exactly the kind
of paths we’re interested in. The set of labels for edges of DG,M is X0 ∪ CM
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(where X0 = X \ V (M) and CM is the set of colours of the edges of M .)
If there is a colour u edge in G from x ∈ X to mv ∩ Y , then we label the
corresponding edge uv ∈ DG,M by the following rule.

• If x ∈ X0 then the edge uv is labelled by x.

• If x ∈ mc ∈M then uv is labelled by c, the colour of mc.

1 2 3 4 5 6
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X

M M M M M

Figure 2: The same graphs G and DG,M as in Figure 1, but now with the edge-labels on
DG,M . The coloured edges in DG,M are ones labelled by elements of CM (or equivalently
the ones labelled by something in V (DG,M ).) The black edges are ones labelled by elements
of X0 (or equivalently ones labelled by something not in V (DG,M ).)

See Figure 2 for an example of this labelling. One key point to notice is that
the set of labels X0 ∪ CM is not just an ambient set—since V (DG,M) = CG
an element of CM can simultaneously be a vertex of DG,M and a label of
edges in DG,M . Formally, an edge-labelled directed graph is defined to be a
directed graph D together with a set X0 with X0∩V (D) = ∅ and a labelling
function f : E(D)→ V (D) ∪X0. The set X0 is called the set of non-vertex
labels in D. We call X0 ∪ V (D) the set of labels in D (regardless of whether
D actually has edges labelled by all elements of X0 ∪ V (D)).

Having equipped DG,M with a labelling, we can define the kinds of paths
we are interested in.

Definition 2.2 (Switching path). A path P = (p0, . . . , pd) in an edge-
labelled, directed graph D is a switching path if the following hold.

• P is rainbow i.e. the edges of P have different labels.

• If pipi+1 is labelled by a vertex v ∈ V (D), then v = pj for some 1 ≤
j ≤ i.
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Figure 3: A switching path in a graph DG,M . Replacing the edges of M for the other
pictured edges of G produces a new matching of the same size as M .

In other words a switching path is a rainbow path with a kind of “consis-
tency” property for its edge-labels which are vertices: For every edge e ∈ P
which is labelled by a vertex v, P must pass through v before it reaches e.
Notice that this vertex v is not allowed to be p0, the starting vertex of P .
A consequence of this is that the first edge p0p1 of P cannot be labelled by
a vertex of D (in the case of DG,M this means that the first edge of any
switching path must be labelled by something in X0).

See Figure 3 for an example of a switching path. Notice that this path
does correspond to the kinds of local manipulations of M which we are inter-
ested in i.e if we exchange the edges of M for the edges in G corresponding
to the switching path, then we obtain a new rainbow matching of the same
size as M .

When looking at a switching path in the graph is DG,M , the vertices of
P correspond to edges of G which we want to remove from the matching
M , and the edges of P correspond to edges of G which we want to add
to M . The two conditions in the definition of “switching path” then have
natural interpretations when one seeks to obtain a new rainbow matching by
switching the edges along P . Asking for the switching path to be rainbow
is equivalent asking for the edges we want to add to M not intersecting in
X (which is needed to get a matching). The second part of Definition 2.2
ensures that when we add an edge to M , its colour was previously removed
from M .

The following exercise makes precise how to modify a matching M using
a switching path in DG,M starting from a colour outside M .

Exercise 2.3. Let M be a rainbow matching in a graph G, p0 a colour not in
M , and P = (p0, p1, . . . , pd) a switching path in DG,M . For i ≥ 1, let mi be
the colour pi edge of M , and for i ≥ 0, let ei be the edge of G corresponding
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to pipi+1. Show that the following is a rainbow matching missing the colour
pd:

M + e0 −m1 + e1 · · · −md−1 + ed−1 −md.

For a solution to the above exercise, see Claim 3.6. Exercise 2.3 is exactly
what we use to try and extend M into a larger matching. If M was chosen to
be maximum, then Exercise 2.3 can be used to show that DG,M possesses a
certain degree property. This and other properties of DG,M will be discussed
in the next section.

2.2. Properties of the directed graph

The labelled directed graph DG,M ends up having several properties which
we use in the proof of Theorem 1.3. In this section we go through the
properties which we need. See Figure 4 for examples of some of the features
that DG,M can have.

1 2 3 4 5 6 6

6

Y

X

M M M M M

Figure 4: Some of the features DG,M has. The directed graph DG,M doesn’t have multiple
edges, unless they go in different directions (like the two edges labelled 6). At a vertex v,
DG,M never has out-going edges with the same label, but it may have in-going edges with
the same label (For example the green vertex has two in-going blue edges.)

For two vertices u, v ∈ DGM it is possible for uv and vu to both be
present in DG,M . For example the two edges between the green and pink
vertices in Figure 4. However it is impossible for the edge uv to appear twice
with different labels i.e. the directed graph DG,M is simple.

Exercise 2.4. Using the fact that G is properly coloured, show that for u, v ∈
V (DG,M), there is at most one edge from u to v in DG,M .

For a solution to this exercise, see Lemma 3.2. The labelling on the
directed graph DG,M is far from a general labelling. We make the following
definitions which generalize proper colouring to directed graphs.
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Definition 2.5. Let D be a labelled directed graph.

• D is out-properly labelled if for any u ∈ V (D), all out-going edges uv
have different labels.

• D is in-properly labelled if for any u ∈ V (D), all in-going edges vu
have different labels.

It turns out that the labelling on DG,M is always out-proper.

Exercise 2.6. Using the fact that G is properly coloured, show that DG,M is
out-properly labelled.

For a solution to this exercise, see Lemma 3.2. The labelling on DG,M

is not always in-proper. For example, in Figure 4, the green vertex has two
in-going blue edges. Notice that in Figure 4 this happened because of the
multiple edge in G. It turns out that this is the only way to have in-going
edges with the same label in DG,M .

Exercise 2.7. Suppose that G is properly coloured, simple, and M is a
matching in G. Show that DG,M is in-properly labelled.

Recall that the special case of Theorem 1.3 when G is simple was proved
in the author’s earlier paper [8]. The case when G is simple turns out to be
much easier to prove precisely because the directed graph DG,M associated
to G is both in-properly and out-properly labelled. The reason for the dif-
ficulty of the multigraph case is that dense directed graphs which are not
in-properly labelled do not necessarily have certain connectivity properties.
This difficulty is explained in more detail in Section 2.3.

The other main property of DG,M which we will need is a degree property
i.e. we will want to know that all vertices in DG,M have a suitably large
degree. Let Y0 = Y \S be the set of vertices in Y disjoint from the matching
M . From the definition of DG,M , notice that every edge e ∈ G corresponds
to an edge of DG,M unless e passes through Y0 or e ∈M 2. A consequence of
this is that e(DG,M) = e(G)− |M | − e(X, Y0). Recall that every colour c in

2The edges of M could be naturally thought of corresponding to loops in DG,M , but
to keep our analysis to loopless graphs, we won’t do this.
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G has (1 + ε)n edges. For a colour c, let cY0 be the number of colour c edges
going through Y0. From the definition of DG,M we have

|N+(c)| = (1 + ε)n− cY0 − 1 if M has a colour c edge, (1)

|N+(c)| = (1 + ε)n− cY0 if M has no colour c edge. (2)

Here N+(c) denotes the out-neighbourhood of c i.e. the set of x ∈ V (DG,M)
with cx ∈ E(DG,M). Notice that (1) and (2) do not by themselves imply that
|N+(c)| is large for any colour c. It is possible that most of the edges of G go
through Y0, making the cY0 term dominant in (1) and (2). However the fact
that M is a maximum size rainbow matching does force some colours in G
to have a large out-degree in DG,M . In particular if c0 is a colour which does
not appear on M , then notice that there cannot be any edges in G between
X0 and Y0—indeed if such an edge existed then it could be added to M to
give a rainbow matching larger than M . Recall that from the assumption of
Theorem 1.3 there are ≥ (1 + ε)n colour c0 edges in G, and at most |M | ≤ n
of these can intersect X ∩ V (M). The other εn colour c0 edges must go
between X0 and Y ∩ V (M), giving |N+(c0)| ≥ εn.

The above discussion shows that all colours not on M have a high out-
degree in DG,M . Can we get something similar for the other colours in G?
Recall from Exercise 2.3 that switching paths can be used to give new rainbow
matchings with the same size as M . Using this it is easy to show that any
colour close to c0 6∈M in DG,M has a large degree in DG,M as well.

Exercise 2.8. Let c0 be a colour not on M , and c some other colour. Let P
be a switching path from c0 to c in DG,M . Then |N+(c)| ≥ εn− |P |.

The above exercise is a special case of Lemma 3.7 which we prove later. So
far we have looked at only edges labelled by X0 and found that vertices close
to missing colours have many such edges leaving them. For a set of labels L,
define N+

L (v) to be the set of x ∈ N(v) with vx labelled by some ` ∈ L. Under
the assumptions of Exercise 2.8, it is easy to show that |N+

X0
(c)| ≥ εn− |P |.

We would like to have information about how big N+
L is for sets of labels

L other than X0. Where could we get such information? In Figure 5, notice
that if M is a maximum matching, then there cannot be any red edges going
from {2, 4, 9} to Y0. Indeed if there was such an edge e then we could look at
the rainbow matching M ′ as in Exercise 2.3 (corresponding to the switching
path in Figure 5) and then add e to M ′ to get a larger rainbow matching.
Thus if there are red edges in G touching {2, 4, 9}, then they must go through
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Y ∩ V (M), and hence must have corresponding edges in DG,M . Since these
edges go from v to N+(v), this would tell us that N+(v) is slightly bigger
than the estimate we have in Exercise 2.8. For just the single path P in
Figure 5, this increase is very small. But if we had a large collection of
switching paths P like the one in Figure 5, then the gains may add up to
give a large improvement on the bound in Exercise 2.8. The next definition
captures what kind of information about the path P in Figure 5 we were
interested in.

Definition 2.9 (Amidst). Let u and v be two vertices in an edge-labelled,
directed graph D, and ` a label. We say that ` is amidst u and v if there is a
switching path P = (u, p1, . . . , pd, v) from u to v such that the following hold.

• There are no edges of P labelled by `.

• If ` is a vertex of D then ` ∈ {p1, . . . , pd, v}.

1 2 3 4 5 6

6
7

7 8

8

9
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X

M M M M M

Figure 5: A switching path P in a graph DG,M , and three edges that can be added to get
a larger matching. Notice that the three labels {blue, pink, 9} in DG,M are amidst grey
and red, as witnessed by the switching path P . The vertices in X of blue and pink are 2
and 4—which are the X-vertices of the corresponding dashed red edges. This shows how
amidstness is used to identify vertices of X through which we can add edges to extend M .
This is the essence of Exercise 2.10.
Notice that in the above diagram, labels which are not amidst a pair of labels cannot be
used for augmenting the matching M . For example, if there was a red edge f from vertex
5 to Y0, then one might hope to switch some edges to free up the red colour and vertex
5 in order to extend the matching by adding f . However this cannot be done because
freeing up vertex 5 and colour red would require yellow to be amidst grey and red. In the
above diagram yellow is not amidst grey and red. (intuitively because in order to free up
red, the yellow edge starting at 6 must be used).

Notice a parallel between each of the two parts of the definitions of
“switching path” and “amidst”: The first parts are about forbidding edges
of a path from having particular labels, whereas the second parts are about
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paths passing through a particular vertex. This similarity is no coincidence
— a path P = (p0, . . . , pd) is a switching path if, and only if, the path
p0, . . . , pd−1 is a switching path witnessing the label of pd−1pd being amidst
p0 and pd−1.

If P is a path as in Definition 2.9, then we say that P witnesses ` being
amidst u and v. As an example, the path P in Figure 5 witnesses each of
the labels {blue, pink, 9} being amidst grey and red. Suppose that ` ∈ CM
is the colour of some edge m in M . By an argument similar to the one in the
previous paragraph, it is possible to show that if ` is a label amidst u and v,
and u is not present on M , then there is no colour v edge from m∩X to Y0.

Exercise 2.10. Let `, u, v be colours in G with u not in M and ` the colour
of an edge m ∈ M . If ` is amidst u and v, then there is no colour v edge
from m ∩X to Y0 in G.

For a solution to the above exercise see Lemma 3.5. The essence of the
solution is in Figure 5 — the dashed red edges are exactly the kind of edges
that Exercise 2.10 is about. If any of them were present in the graph then
they could be augmented to the matching. We now have that given a set of
vertices X ′ ⊆ X, if all the corresponding labels are amidst u and v, then all
the colour v edges touching X ′ in G must contribute to N+(v) in DG,M . The
following exercise is a strengthening of Exercise 2.8 which takes into account
vertices in X outside X0.

Exercise 2.11. Suppose that M misses a colour c∗, v is a colour in G, and
A is a set of labels in DG,M which are amidst c∗ and v. Then |N+

A (v)| ≥
|A| − |X0|+ εn− 1.

For a solution to this exercise, see Lemma 3.7. As remarked before,
this is actually a strengthening of Exercise 2.8. Indeed given a path P as
in Exercise 2.8, notice that if x ∈ X0 is a label which does not occur on
edges of P , then x is amidst u and v (witnessed by the path P .) Applying
Exercise 2.11 with A the set of labels in X0 and not on P we get |N+

A (v)| ≥
|A| − |X0|+ εn− 1 ≥ εn− |P |.

Exercise 2.11 allows us to finally state the method we use to prove The-
orem 1.3. We prove that for any ε > 0, there cannot be arbitrarily large
labelled digraphs satisfying the degree condition of Exercise 2.11. The fol-
lowing is an intermediate theorem we prove, which implies Theorem 1.3.
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Theorem 2.12. For all ε with 0 < ε ≤ 0.9, there is an N0 = N0(ε) such that
the following holds. Let D be any out-properly edge-labelled, simple, directed
graph on n ≥ N0 vertices. Let X0 be the set of labels which are not vertices
of D

Then for all u ∈ V (D), there is a vertex v and a set of labels A amidst u
and v, such that |N+

A (v)| < |A| − |X0|+ εn.

We remark that the set A can be an arbitrary subset of V (D) ∪X0 and
that D might not have edges labelled by all elements of A.

Modulo the discussion in this section, it is easy to see that this theorem
implies Theorem 1.3. Indeed suppose that there was a sufficiently large graph
G as in Theorem 1.3. Suppose that a maximum matching M in G doesn’t
use every colour. By Exercises 2.4 and 2.6 we know that the corresponding
digraph DG,M is out-properly labelled and simple. Let c∗ be some colour
outside M . By Exercise 2.11 we know that for any v ∈ V (DG,M), we have
|N+

A (v)| ≥ |A| − |X0| + εn − 1 ≥ |A| − |X0| + 0.9εn for any set of labels A
amidst c∗ and v. But this contradicts Theorem 2.12.

We conclude this section by explaining how amidstness can be used to
build switching paths. Recall that a path P = (p0, . . . , pd) is a switching
path if, and only if, the path p0, . . . , pd−1 is a switching path witnessing the
label of pd−1pd being amidst p0 and pd−1. Because of this, labels which are
amidst two vertices u and v have potential to be be used to extend switching
paths. The following exercise makes this precise.

Exercise 2.13. If a label ` is amidst x and y and there is some vertex z such
that the edge yz is present and labelled by `, then there is a switching path
from x to z.

A version of this exercise is proved in Lemma 4.25. Exercise 2.13 is
important because it is one of the tools we will use to build longer and longer
switching paths.

2.3. The right notion of connectedness

Theorem 2.12 is proved studying connectivity properties of subgraphs of
D. It is not immediately apparent why connectivity is useful here. One hint
of it being useful comes from the definition of “amidst”. The first part of the
definition of “amidst” asks for a u to v path avoiding all edges of label `. If
there are < k colour ` edges then this is a property k-edge-connected graphs
have. The second part of the definition of “amidst” asks for a path going from
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u to v via some other vertex `. This is a property which 2-vertex-connected
undirected graphs have (as a consequence of Menger’s Theorem).

The purpose of connectivity in the proof is to find sets of vertices C ⊆
V (DG,M) which are highly connected in the following sense—for any pair
u, v ∈ C we have c amidst u and v for most c ∈ C. We can then plug C
into the assumption of Theorem 2.12 in order to deduce that v has a high
out-degree. Knowing that vertices in C have high out-degree is then used to
find a set C ′ which is also highly connected and substantially larger than C.
Iterating this process we get larger and larger highly connected sets, which
can eventually be used to get a contradiction to these sets being smaller than
V (D).

What notion of connectivity should we use? In [8], the following notion
was used.

Definition 2.14. Let W be a set of vertices in a labelled digraph D. We say
that W is (k, d)-rainbow connected in D if, for any set of at most k labels S
and any vertices x, y ∈ W , there is a rainbow x to y path of length ≤ d in D
avoiding colours in S.

This kind of connectivity is useful when the graph G is a simple graph
rather than a multigraph. Recall that if G is a simple graph then the labelling
on DG,M is both in-proper and out-proper. In [8] it is proved that in any
labelled digraphD there is a highly (k, d)-connected set C with |C| ≥ δ+(G)−
o(n) which is a key intermediate result in proving Theorem 1.3 in the case
when G is simple.

WhenG is a multigraph, then we know thatDG,M is out-properly labelled,
but not necessarily in-properly labelled. Definition 2.14 isn’t the right notion
of connectivity for studying such graphs. It is possible to have an out-proper
labelling of the complete directed graph in which any vertex can be isolated
by deleting just one label. See Figure 6 for an example of such a graph. This
graph is a complete directed graph where every edge xy is labelled by `y (for
some label `y which only appears on in-going edges to y.) This graph has a
high out-degree but doesn’t have any (1,∞)-connected subgraphs. This is
the issue with using (k, d)-connectedness since we would like high out-degree
graphs to have highly connected subsets.

We introduce a different kind of connectedness, for which the graph in
Figure 6 is highly connected. The following is at the heart of the notion of
connectivity which we use.
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Figure 6: A labelled directed graph whose labelling is out-proper, but not in-proper. Here
all the edge-labels are not vertices. The edge-labelling is such that every vertex v has
a “chosen colour” with all edges directed towards v having the chosen colour. Notice
that deleting all edges having a particular label reduces the in-degree of some vertex to 0,
effectively isolating it.

Definition 2.15 (Reaching). For a vertex v ∈ V (D) and a set R ⊆ V (D),
we say that v (k, d,∆)-reaches R if for any set S of ≤ k labels, there are
length ≤ d switching paths avoiding S to all, except possibly at most ∆,
vertices x ∈ R.

Standard notions of connectedness are based on studying when two ver-
tices are connected by a path. “Reaching” is fundamentally different from
these since it is of no use to know that a vertex u reaches another vertex v.
In fact any vertex u (∞,∞, 1)-reaches any singleton {v} (since ∆ = 1, we
can let {v} be the set of ∆ vertices in S to which we don’t need to find a path
in the definition of reaching. More generally, there is nothing to check in the
definition of “reaching” when ∆ ≥ |R|.) Thus “reaching” is only meaningful
when we talk about a vertex reaching a reasonably large set of vertices R.
Notice that the graph in Figure 6 has good connectivity properties with our
new definition.

Exercise 2.16. For the labelled directed graph D in Figure 6 and any k ≤ ∆,
show that every v ∈ V (D) (k, 1,∆)-reaches V (D).

To prove Theorem 2.12, we will need to have a fairly deep understand-
ing of “reaching”. This involves first proving several basic consequences of
the definition such as showing that reaching is monotone under change of pa-
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rameters, preserved by unions, and has a kind of transitivity property. These
properties are proved in Section 4.1.

Our main goal when studying “reaching” will be to show that some ana-
logue of connected components exists for the new notion of connectedness.
Recall that a strongly connected component C in a directed graph is a max-
imal set of vertices in a graph such that for any two vertices x and y in C
there is a path from x to y. Analogously, in a labelled graph we would like
to find a maximal set C such that any x ∈ C reaches all of C for suitable
parameters. This notion of a maximal reached set seems a bit hard to work
with, so we will instead deal with the following approximate version.

Definition 2.17 ((k, d,∆, γ, k̂, d̂, ∆̂)-component). A set C ⊆ V (D) is a (k, d,
∆, γ)-component if for any vertex v ∈ C, there is a set Rv with |Rv4C| ≤ ε3n
such that the following hold.

(i) v (k, d,∆)-reaches Rv.

(ii) v doesn’t (k̂, d̂, ∆̂)-reach any set R disjoint from Rv with |R| ≥ γn.

In other words a (k, d,∆, γ, k̂, d̂, ∆̂)-component is a set C such that every
vertex v ∈ C reaches most of C and doesn’t reach any large set outside C. It
is not at all obvious that (k, d,∆, γ, k̂, d̂, ∆̂)-components exist for particular
parameters k, d,∆, γ, k̂, d̂, ∆̂. An important intermediate lemma we prove
in Section 4.2, is that for given k, d,∆, γ, there is a (k′, d′,∆′, γ′, k̂′, d̂′, ∆̂′)-
component for new parameters k′, d′,∆′, γ′, k̂′, d̂′, ∆̂′ close to k, d,∆, γ.

We make a remark about how constants will be dealt with throughout
this paper. Looking at the definitions of “(k, d,∆)-reaches” and “(k, d,∆, γ,
k̂, d̂, ∆̂)-component”, they look a bit scary because of the large number of
parameters there are in each definition. In the actual proof of Theorem 2.12
in Section 4 this won’t be the case because we introduce a single parameter,
λ, which will control each of the parameters k, d,∆, γ, k̂, d̂, ∆̂. Formally,
in Section 4 we define seven explicit functions kε(λ), dε(λ), ∆ε(λ), γε(λ),
k̂ε(λ), d̂ε(λ), and ∆̂ε(λ) depending on ε (which is the constant given in the
statement of Theorem 2.12.) Then we say that v λ-reaches a set R if v
(kε(λ), dε(λ),∆ε(λ))-reaches R, and that a set C is a λ-component if C is
a (kε(λ), dε(λ),∆ε(λ), γε(λ), k̂ε(λ), d̂ε(λ), ∆̂ε(λ))-component. The advantage
of this is that it means that only one parameter, λ, needs to be kept track
of between the various lemmas that we prove. This makes the high level
structure of the proof of Theorem 2.12 easier to follow.

We mention a final definition which we use in the paper.
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Definition 2.18 (Bypassing). For a vertex v ∈ V (D) and a set B ⊆ V (D),
we say that v (k̂, d̂, ∆̂, γ)-bypasses B if v doesn’t (k̂, d̂, ∆̂)-reach any set R
contained in B with |R| ≥ γn

The significance of the above definition is that part (ii) of the definition
of (k, d,∆, γ, k̂, d̂, ∆̂)-component can be now rephrased as “v (k̂, d̂, ∆̂, γ)-
bypasses V (D) \ Rv”. Thus the notion of bypassing is important because
it eases the study of (k, d,∆, γ, k̂, d̂, ∆̂)-components.

Recall that at the start of the section we said that the reason for using
connectedness is to be able to study “amidstness”. It is not immediately
apparent how the definitions we introduce do this. With a bit of work it
is possible to prove that in a (k, d,∆, γ, k̂, d̂, ∆̂)-component C, most triples
(u, c, v) ∈ C × C × C have c amidst u and v.

Lemma 2.19. For ε > 0, D a sufficiently large labelled directed graph, and
C a (k, d,∆, γ, k̂, d̂, ∆̂)-component in D for suitable k, d,∆, γ, k̂, d̂, ∆̂, there
are at least |C|3 − (εn)3 triples (u, c, v) ∈ C × C ×C with c amidst u and v.

The above lemma is an easy consequence of Lemma 4.26 which we prove
in Section 4.3. The full Lemma 4.26 will say a bit more, giving information
about the structure of triples (u, c, v) ∈ C × C × C with c amidst u and v.

2.4. An overview of the proof of Theorem 2.12

Here we give a high level overview of the strategy of the proof of Theo-
rem 2.12. The proof begins by supposing for the sake of contradiction that
there is a vertex u ∈ V (D) such that for every vertex v and a set of labels A
amidst u and v we have |N+

A (v)| < |A|− |X0|+ εn. The proof of the theorem
naturally splits into three parts.

1. Find (ki, di,∆i, γi, k̂i, d̂i, ∆̂i)-components C0, . . . , Cm for suitable pa-
rameters such that Ci∩Ci+1 6= ∅. In addition we find a short switching
path from u to each Ci. This is done as follows:

1.1 Prove lemmas along the lines of “for any vertex v and parameters
k, d,∆, γ there are complementary sets Rv and Bv such that v
(k′, d′,∆′)-reaches Rv and doesn’t reach anything in Bv for suit-
able parameters k′, d′,∆′ close to k, d,∆. This is performed in
Lemmas 4.13 and 4.14.

17



1.2 Show that reaching has a transitivity property: If v reaches a
sufficiently large set R and every vertex in R reaches a set R′,
then v reaches R′. This is performed in Lemma 4.11.

1.3 Choose a vertex v with the set Rv from part 1.1 as small as possi-
ble. Using transitivity, it is possible to show that for most vertices
u ∈ Rv we have that |Ru4Rv| is small. By letting C = Rv minus
a few vertices it is possible to get a single component of the sort
we want. This is performed in Lemma 4.18.

1.4 By iterating 1.3, we can get the sequence of components C0, . . . ,
Cm which we need. This is performed in Lemma 4.22.

2. We show that if C is a (k, d,∆, γ, k̂, d̂, ∆̂)-component close to u, then
either any v ∈ C (k′, d′,∆′, γ′)-reaches some set R with |R| ≥ |C|+(ε−
o(1))n for suitable parameters or the conclusion of Theorem 2.12 holds
for some A ⊆ C ∪ X0. The formal statement of this is Lemma 4.32.
This step is performed as follows:

2.1 We show that for most triples (u, c, v) ⊆ C × C × C, c is amidst
u and v. This is performed in Lemma 4.26.

2.2 Let R be the set of z ∈ V (D) for which there are a lot of triples
(u, c, v) such that vz is an edge labelled by c and c is amidst u
and v.

2.3 The vertex v ends up (k′, d′,∆′)-reaching R as a consequence of
2.1. This is performed in Claim 4.34.

2.4 Use the assumption of Theorem 2.12 applied to a suitable subset
of C ∪ X0 together with Lemma 2.19 to show that |R| ≥ |C| +
(ε− o(1))n. This is performed in Claims 4.35 and 4.36.

3. Combining parts 1 and 2 and the definition of (k, d, ∆, γ, k̂, d̂, ∆̂)-
component we obtain that |Ci+1| ≥ |Ci|+ (ε− o(1))n for every Ci from
part 1. If the number of components m� ε−1 this gives a contradiction
to |Cm| ≤ |V (D)| = n.

2.5. An example

In this section we give an illustrative labelled directed graph and explain
how the proof of Theorem 2.12 works for that particular graph.
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Figure 7: The labelled, directed graph Ds,t.

For a fixed ε > 0 and t� ε−1, we define a directed graph Ds,t as follows:
Ds,t has n = st vertices split into t disjoint classes V1, . . . , Vt each of size s with
Vi = {v1,i, . . . , vs,i}. The set of non-vertex labels in Ds,t is X0 = {x1, . . . , xs}.
All the edges are present in G going in both directions. Each vertex in G
has it’s own “chosen label” with all edges directed towards the vertex having
that label (much like the graph in Figure 6.) For i 6= 1 and any vertex u,
the edge uvj,i has label vj,i−1. For a vertex u and a vertex vj,1 ∈ V1, the edge
uvj,1 has label xj.

Because of the simple structure the graphs Ds,t have, it is possible to
describe all switching paths, reached sets, bypassed sets, and components in
these graphs.

Exercise 2.20 (Switching paths in Ds,t). A directed path P = (p0, p1, . . . , pd)
is a switching path if, and only if, “vj,i = pk ∈ V (P ) =⇒ vj,i−1, . . . , vj,1 ∈
{p1, . . . , pk−1}”.

Exercise 2.21 (Amidstness in Ds,t).

• A vertex va,b is amidst vertices vc,d and ve,f if, and only if, b, d 6= f and
va,b 6= vc,d.

• A label xb is amidst vertices vc,d and ve,f if, and only if, b, d 6= f .
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In each of the next three exercises we give a necessary condition and a
sufficient condition for a set to be reached, bypassed, or be a component.
Although the necessary conditions and a sufficient conditions which we give
are not exactly the same, they are always quite similar. Thus the next three
exercises should be seen as giving a near-characterization of sets which are
reached, bypassed, and components in Ds,t.

Exercise 2.22 (Reaching in Ds,t). Let v ∈ V (Ds,t) and R ⊆ V (Ds,t).

• If v (k, d,∆)-reaches R then |R \ (V1 ∪ · · · ∪ Vd)| ≤ ∆.

• If |R \ (V1 ∪ · · · ∪ Vd)| ≤ ∆− (k + 1)d, then v (k, d,∆)-reaches R.

Exercise 2.23 (Bypassing in Ds,t). Let v ∈ V (Ds,t), B ⊆ V (Ds,t), and

∆̂ ≥ (k̂ + 1)d̂.

• If v (k̂, d̂, ∆̂, γ)-bypasses B then |B ∩ (V1 ∪ · · · ∪ Vd)| ≤ γn.

• If |B ∩ (V1 ∪ · · · ∪ Vd)| < γn− ∆̂, then v (k̂, d̂, ∆̂, γ)-bypasses B.

Exercise 2.24 (Components in Ds,t). Let C ⊆ V (G), ε3n ≥ max(γn,∆, ∆̂),

∆ ≥ (k + 1)d, ∆̂ ≥ (k̂ + 1)d̂, and d̂ ≤ d

• If C is a (k, d,∆, γ, k̂, d̂, ∆̂)-component then |C4(V1∪· · ·∪Vd)| ≤ 8ε3n.

• If |C4(V1∪· · ·∪Vd)| ≤ ε3n then C is a (k, d,∆, γ, k̂, d̂, ∆̂)-component.

Using Exercise 2.21 we can check that Thereom 2.12 holds for the graphs
Ds,t. To see this notice that for any pair of vertices va,b and vc,d for b 6= d and
any set of labels A with A∩{vi,b, vi,d : i = 1, . . . , s} = ∅ we have A amidst va,b
and vc,d. Notice also that |N+

A (v)| = |A| or |A| − 1 for every vertex v and set
of labels A. Finally, recall that |X0| = s ≥ εn. Thus we see that for a given
vertex u = va,b the conclusion of Thereom 2.12 holds by choosing v = vc,d for
d 6= b and A any set of labels disjoint from {vi,b, vi,d : i = 1, . . . , s} with |A| >
n (for example we could take A = V (Ds,t) ∪X0 \ {vi,b, vi,d : i = 1, . . . , s}.)

This example teaches us an important lesson. It is not hard to see that
if A is amidst u and v and satisfies |N+

A (v)| < |A| − |X0| + εn then |A| > n
must hold. From this we see that any proof of Theorem 2.12 for the graph
Ds,t must “find” a very large set of labels A amidst some pair of vertices.
In the remainder of this section, we explain how the strategy in Section 2.4
finds such a set A.
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In Part 1 of the overview in Section 2.4, the proof finds (ki, di,∆i, γi, k̂i, d̂i,
∆̂i)-components C0, . . . , Cm for suitable parameters such that Ci ∩Ci+1 6= ∅.
Here “suitable parameters” means that m � ε−1, that di,∆i, γi, d̂i, and ∆̂i

increase with i while ki and k̂i decrease with i. For the sake of argument, let us
consider what happens when m = ε−4, di = d̂i = i, γi = ε9i, ∆i = ∆̂i = 2im,
and k = k̂ = m−i. For these values, Exercise 2.24 tells us that for i = 1, . . . , t
we must have |Ci 4 (V1 ∪ · · · ∪ Vi)| ≤ 8ε3n and that for i = t + 1, . . . ,m we
have |Ci4 (V1 ∪ · · · ∪ Vt)| ≤ 8ε3n.

In Parts 2 and 3 of the overview in Section 2.4, it is shown that if C is
a component close to u, then either any v ∈ C (k′, d′,∆′, γ′)-reaches some
set R with |R| ≥ |C|+ (ε− o(1))n for suitable parameters or the conclusion
of Theorem 2.12 holds for some A ⊆ C ∪ X0 and v ∈ C. Testing this
for the components C0, . . . , Cm from Part 1, we see that for i = 0, . . . , t −
1, there is a set R such that v (ki, di + 1,∆i, γi)-reaches some set R with
|R| ≥ |C| + (ε − o(1))n (namely we can take R = V1 ∪ · · · ∪ Vi+1.) On
the other hand for i = t, . . . ,m such a set R doesn’t exist, so Part 2 would
imply that the conclusion of Theorem 2.12 holds for some A ⊆ Ci ∪ X0

and v ∈ C. If u = va,b then we see that this is indeed the case with e.g.,
A = Ci ∪X0 \ {v1,b, . . . , vt,b, v1,c, . . . , vt,d} and v = va,c.

Notation

For standard notation we follow [12]. A path P = (p0, p1, . . . , pd) in a
directed graph D is a sequence of vertices p0, p1, . . . , pd such that pipi+1 is an
edge for i = 0, . . . , d−1. The order of P is the number of vertices it has, and
the length of P is the number of edges it has. We’ll use additive notation
for concatenating paths i.e. if P = (p1, p2, . . . , pi) and Q = (pi, pi+1, . . . , pd)
are two internally vertex-disjoint paths, then we let P + Q denote the path
(p1p2 . . . pd). Throughout the paper, all directed graphs will be simple mean-
ing that an edge xy appears only at most once. We do allow both of the
edges xy and yx to appear in the directed graphs we consider. For clarity we
will omit floor and ceiling signs where they aren’t important.

Our digraphs are always simple i.e. they never have two copies of an edge
going from a vertex u to a vertex v. A digraph is out-properly labelled if all
out-going edges at a vertex have different labels. For a vertex v in a digraph,
the out-neighbourhood of v, denoted N+(v) is the set of w ∈ V (D) with vw
an edge of D.

Throughout the paper we will deal with edge-coloured undirected graphs
and edge-labelled directed graphs. The difference between the two concepts
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is that in an edge-coloured graph, the set of possible colours is just some
ambient set, whereas in an edge-labelled digraph D the set of possible labels
is V (D)∪X0 where V (D) is the set of vertices of D (and X0 is some ambient
set unrelated to D.) Formally, an edge-labelled directed graph is defined to
be a directed graph D together with a set X0 with X0 ∩ V (D) = ∅ and a
labelling function f : E(D) → V (D) ∪ X0. The set X0 is called the set of
non-vertex labels in D. We call X0 ∪ V (D) the set of labels in D (regardless
of whether D actually has edges labelled by all elements of X0 ∪ V (D)).

Throughout the paper we will always use “G” to denote a coloured bi-
partite graph with parts X and Y and M a rainbow matching in G. We’ll
use CG to denote the set of colours in G and CM to denote the set of colours
in M . We’ll use V (M) to mean the set of vertices contained in edges of M ,
and X0 = X \ V (M) and Y0 = Y \ V (M) to denote the vertices in X and Y
outside M . For a colour c ∈ CM , we use mc to denote the colour c edge of
M .

3. From bipartite graphs to directed graphs

In this section we show how go from the Aharoni-Berger Conjecture to
a problem about edge-labelled digraphs. We define a directed, edge-labelled
digraph DG,M corresponding to a coloured bipartite graph G and a rainbow
matching M in G.

Definition 3.1 (The directed graph DG,M). Let G be a coloured bipartite
graph with parts X and Y and n colours. Let M be a rainbow matching in
G. Let X0 = X \ V (M) be the subsets of X disjoint from M . Let CG be the
set of colours used in G and CM ⊂ CG be the set of colours used on edges
in M . For a colour c ∈ CM , we let mc denote the colour c edge of M . The
labelled digraph DG,M corresponding to G and M is defined as follows:

• The vertex set of DG,M is the set CG.

• The edges of DG,M are be labelled by elements of the set X0 ∪ CM .

• For two colours u and v ∈ V (DG,M) and a vertex x ∈ X, there is a
directed edge from u to v in DG,M whenever v ∈ CM and there is a
colour u edge from x to mv ∩ Y .

– If x ∈ X0 then the edge uv is labelled by x.
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– If x ∈ mc ∈M then uv is labelled by c, the colour of mc.

Notice that every edge e ∈ E(G) corresponds to at most one edge of
DG,M . There are two types of edges in G which do not correspond to edges
of DG,M : Edges going through Y0 do not appear in DG,M , and also the edges
of M do not appear in DG,M either. Thus the edges of DG,M are naturally in
bijection with the edges of G[X ∪ V (M)] \M . Also notice that if c 6∈ CM is
a colour which doesn’t appear in M , then the in-degree of c in DG,M is zero.

For any set L of labels in DG,M we define a corresponding set (L)X of
vertices in X as follows. For a colour c ∈ CM we define (c)X to be mc ∩X
where mc is the colour c edge of M . For any vertex x ∈ X0, we set (x)X =
{x}. For L a set of labels of DG,M , we define (L)X =

⋃
`∈L(`)X i.e. (L)X is

the subset of L consisting of vertices in X0 together with M ′ ∩X where M ′

is the subset of M consisting of edges whose colour is in L.
Notice that with the above definition, if xy is an edge of G and ` is the

label of the corresponding edge of DG,M , then we always have (`)X = x.
Conversely if uv is an edge of DG,M labelled by `, then the corresponding
edge of G goes from (`)X to mv ∩ Y . Also notice that |(L)X | = |L| for any
set of labels of DG,M .

It turns out that if G is properly coloured, then DG,M is out-properly
labelled and simple.

Lemma 3.2. Let G be a properly edge-coloured bipartite graph and M a
matching in G. Then the directed graph DG,M is out-properly labelled and
simple.

Proof. Suppose that uv and uv′ are two distinct edges of DG,M with the same
label `. By definition of DG,M they correspond to two edges of the form (`)Xy
and (`)Xy

′ of G having colour u, where y = mv ∩ Y and y′ = mv′ ∩ Y . But
this contradicts the colouring of G being proper.

Suppose that DG,M is not simple i.e. an edge uv occurs twice with dif-
ferent labels ` and `′. This corresponds to two edges of the form (`)Xy and
(`′)Xy of G having the same colour u (where y = mv ∩ Y .) But this contra-
dicts the colouring of G being proper.

We now come to the central objects of study in this paper—switching
paths. Switching paths in a labelled digraph D are rainbow paths which
have a kind of “consistency” property for the edges they contain which are
labelled by vertices of D.
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Definition 3.3 (Switching path). A path P = (p0, . . . , pd) in an edge-
labelled, directed graph D is a switching path if the following hold.

• P is rainbow i.e. the edges of P have different labels.

• If pipi+1 is labelled by a vertex v ∈ V (D), then v = pj for some 1 ≤
j ≤ i.

Another key definition in this paper is of a label being amidst two vertices.

Definition 3.4 (Amidst). Let u and v be two vertices in an edge-labelled,
directed graph D, and c a label. We say that c is amidst u and v if there is a
switching path P = (u, p1, . . . , pd, v) from u to v such that the following hold.

• There are no edges of P labelled by c.

• If c is a vertex of D then c ∈ {p1, . . . , pd, v}.

If P is a path as in Definition 3.4, then we say that P witnesses c being
amidst u and v. Notice that like in the definition of “switching path”, in
the second part of the definition of “amidst” the vertex c is required to be
a non-starting vertex of P . Also notice that if there is a switching path P
from u to v with |P | ≥ 2, then v is amidst u and v, as witnessed by P .

The following lemma establishes a link between a matching M being max-
imum in a graph G and the behavior of switching paths in the corresponding
digraph DG,M .

Lemma 3.5. Let G be a properly coloured bipartite graph with parts X and
Y and M a maximum rainbow matching in G.

Suppose that M misses a colour c∗ and a is a label in DG,M which is
amidst c∗ and some v ∈ V (DG,M). Then there is no colour v edge in G from
(a)X to Y0 = Y \ V (M).

Proof. Suppose for the sake of contradiction that a colour v edge (a)Xy exists
for y ∈ Y0. Let P be a switching path witnessing a being amidst c∗ and v.
Let p0, p1, . . . , pk be the vertex sequence of P with p0 = c∗ and pk = v. For
1 ≤ i ≤ k, let mi be the edge of M with colour pi. Such edges exist since
the in-degree of pi is positive for i ≥ 1. For 0 ≤ i ≤ k − 1 let `i be the label
of pipi+1 and define xi = (`i)X . For 0 ≤ i ≤ k − 1 let ei be the edge of G
corresponding to the edge pipi+1 of DG,M i.e. ei is the colour pi edge going
from xi to mi+1 ∩ Y .
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Claim 3.6. Let M ′ = M ∪ {e0, . . . , ek−1} \ {m1, . . . ,mk}. Then M ′ is a
rainbow matching in G of size |M | missing the colour v.

Proof. First we show that M ′ is a rainbow set of edges missing the colour v.
Notice that for each i ≥ 1, ei and mi both have colour pi. Also the edge e0 has
colour p0 = c∗. Since M is rainbow and missed colour c∗, M \ {m1, . . . ,mk}
is rainbow and misses the colours c∗, p1, . . . , pk. Therefore M ′ is rainbow and
misses colour pk = v.

It remains to show that M ′ is a matching. Notice that M \ {m1, . . . ,mk}
is a matching as a consequence of M being a matching.

Next we show that {e0, . . . , ek−1} is a matching. Since P is a switch-
ing path, its edges have different labels, which is equivalent to the vertices
x0, . . . , xk−1 being distinct. Also, since P is a path, the vertices p1, . . . , pk
are distinct which implies that the edges m1, . . . ,mk are also distinct. Since
ei goes from xi to mi+1 ∩ Y , these imply that for distinct i and j we have
ei ∩ ej = ∅.

Finally we show that ei ∩ m = ∅ for 0 ≤ i ≤ k − 1 and m ∈ M \
{m1, . . . ,mk}. Suppose that ei ∩m ∩ Y 6= ∅. Then since ei ∩ Y = mi+1 ∩ Y ,
we have m = mi+1 which contradicts m ∈ M \ {m1, . . . ,mk}. Suppose that
ei ∩m ∩X 6= ∅, or equivalently ei ∩m ∩X = {xi}. Then xi ∈ V (M) which
is equivalent to `i ∈ V (DG,M). In particular we find out that `i is a colour
in G (rather than a vertex of X0.) Recall that `i is the label of the edge
pipi+1 of P . Using the definition of P being a switching path, we get that
`i = pj for some 1 ≤ j ≤ i. Then mj is the colour `i edge of M which
gives xi = (`i)X ∈ mj ∩ X. This implies that m = mj which contradicts
m ∈M \ {m1, . . . ,mk}.

We claim that (a)X 6∈ V (M ′). Since a is amidst c∗ and v, we have that
a doesn’t appear on edges of P , which implies (a)X 6= xi for 0 ≤ i ≤ k − 1.
This shows that (a)X is disjoint from e0, . . . , ek−1. If a 6∈ CM , then we have
a ∈ X0 and so (a)X 6∈ V (M) which gives (a)X 6∈ V (M ′). If a ∈ CM , then
since a is amidst c∗ and v, we have that a = pi for some 1 ≤ i ≤ k. This
gives (a)X = mi ∩ X which implies that (a)X 6∈ V (M \ {m1, . . . ,mk}) and
hence (a)X 6∈ V (M ′).

Now we have that neither of the vertices (a)X or y are in M ′, and also
M ′ misses colour v. Thus M ′+ (a)Xy is a rainbow matching of size |M ′|+ 1
contradicting the maximality of M .
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For a set of labels L in a labelled digraph D, define

N+
L (v) = {w ∈ N+(v) : vw is labelled by some ` ∈ L}.

Notice that from the definition of DG,M , we have that |N+
L (v)| is exactly the

number of colour v edges in G going from (L \ {v})X to Y ∩ V (M).
The following corollary of the above lemma shows that if we have a graph

G with a maximum matching missing some colour, then the corresponding
digraph DG,M satisfies a degree condition.

Lemma 3.7. Let G be a properly coloured bipartite graph with parts X and
Y , M a maximum rainbow matching in G, and X0 = X \ V (M).

Suppose that M misses a colour c∗, v is a colour in G with |M | + k
edges, and A is a set of labels in DG,M which are amidst c∗ and v. Then
|N+

A (v)| ≥ |A| − |X0|+ k − 1.

Proof. Suppose for the sake of contradiction that |N+
A (v)| < |A|−|X0|+k−1.

Since |(A)X | = |A|, there are exactly |M |+ |X0| − |A| vertices in X outside
(A)X . The number of colour v edges touching (A\{v})X in G is ≥ |M |+k−
|X \ (A \ {v})X | ≥ |M |+ k− |X \ (A)X | − 1 = |A| − |X0|+ k− 1 > |N+

A (v)|.
Since |N+

A (v)| equals the number of colour v edges between (A \ {v})X and
Y ∩V (M) we obtain that there is a colour v edge from some (a)X ∈ (A\{v})X
to y ∈ Y0 = Y \ V (M). But, by definition of A we have a amidst c∗ and v,
contradicting Lemma 3.5.

The above lemma produces a directed graph with a degree condition. In
the remainder of the paper we show that this degree condition is almost too
strong to hold. We show that if k is linear in |G| for every vertex v and |G|
is sufficiently large, then no digraphs satisfying the conclusion of Lemma 3.7
exists. This is equivalent to there being no graphs with a maximum matching
M satisfying the assumptions of Lemma 3.7 i.e. we obtain that any maximum
matching in such a graph must use every colour.

4. Connectivity of labelled, directed graphs

The goal of this section is to prove the following theorem. Together with
Lemmas 3.2 and 3.7, it immediately implies Theorem 1.3.

Theorem 4.1. For all ε with 0 < ε ≤ 0.9, there is a N0 = N0(ε) such that
the following holds. Let D be any out-properly edge-labelled, simple, directed
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graph on n ≥ N0 vertices. Let X0 be the set of labels which are not vertices
of D

Then for all u ∈ V (D), there is a vertex v and a set of labels A amidst u
and v, such that |N+

A (v)| < |A| − |X0|+ εn.

Throughout this section, for a set of vertices S in a graph D we denote
the vertex-complement of S by S = V (D) \ S.

For a path P , define a corresponding set of labels P consisting of labels
which are either vertices of P or labels of edges of P . Formally P = V (P ) ∪
{` : ` is the label of some e ∈ E(P )} denotes the set of labels consisting of
V (P ) together with the set of labels of edges of P . For a path of length d,
we will often use the bound |P | ≤ 2d + 1 ≤ 3d. For a set of labels S and a
path P starting at a vertex v, we say that P avoids S if S ∩ P ⊆ {v} i.e.
P has no edges labelled by elements of S and P has no vertices in S except
possibly the starting vertex v.

The condition that S is allowed to contain the starting vertex of P in
the definition of “avoids” may seem strange. We have this condition since it
makes many of the arguments in this paper neater. In particular, it allows
us to cleanly concatenate switching paths with the following lemma.

Lemma 4.2. Let P = (p0, p1, . . . , pt) and Q = (pt, pt+1, . . . , ps) be two
switching paths in a labelled digraph D. If Q avoids P then P + Q =
(p1, p2, . . . , ps) is also a switching path.

Proof. To see that P + Q is rainbow, notice that P and Q are rainbow and
that Q shares no edge-labels with P since Q avoids P . To see the second
part of the definition of P +Q being a switching path notice that if pipi+1 is
labelled by v ∈ V (D), then depending on whether v ∈ P or v ∈ Q we have
v = pj for 1 ≤ j ≤ i or v = pj for t+ 1 ≤ j ≤ i.

Another consequence of the definition of “avoids” is that for any set of
labels S, a single vertex path P = v is a path from v to v avoiding S.

The proof of Theorem 4.1 involves lots of constants. The first constant
which we use is ε which is the constant given to us by Theorem 4.1. Through-
out the section it is best to fix ε with 0 < ε ≤ 0.9, and to read everything
that we do as a proof of Theorem 4.1 for that particular ε.

Next we introduce three numbers N0, λmax and δ depending on ε whose
relationship is N−1

0 � λ−1
max � δ � ε. The number N0 will be the N0 in

Theorem 4.1, while λmax and δ are just two numbers with no special meaning.
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We set λmax = 4ε
−9

and δ = ε3. For an integer x let twr(x) = λ
λ.
. .
λmax

max
max be the

tower function, where there are x exponentiations. Set N0 = twr(2λmax).
Next for any λ ∈ N, we define four numbers dλ, kλ,∆λ, and γλ. These

numbers will control the variables in our definition of connectedness and
will allow us to define “reaching” and “components” using just one param-
eter (rather than using four as in Section 2.3.) The specific definitions
of dλ, kλ,∆λ, and γλ are not too important—the intuition is that for any
λ ∈ [1, λmax] we have

λmax �dλ � kλ � ∆λ � γ−1
λ � N0,

dλ+1 � dλ, kλ+1 � kλ,

∆λ+1 � ∆λ, γλ+1 � γλ.

Notice that some sort of upper bound on λ is necessary for all the above to
hold since dλ+1 � dλ, kλ+1 � kλ, and dλ � kλ cannot simultaneously hold
for all λ ∈ N. Because of this, in all our lemmas we will make sure that λ is
in the range 1 ≤ λ ≤ λmax.

For specific dλ, kλ,∆λ, and γλ with which our proofs work, define

dλ = λmax · 4λ,
kλ = λmax(4λ

4
max − 4λmax·λ),

∆λ = twr(λ),

γλ = twr(λ+ 2)−1.

To prove Theorem 4.1 we will need a careful understanding of the switch-
ing paths in a labelled digraph. We will study switching paths via a new
notion of connectedness which we now introduce. The following is the heart
of the notion of connectedness that we study.

Definition 4.3 (λ-reaching). For a vertex v in a labelled digraph D and a
set R ⊆ V (D), we say that v λ-reaches R if for any set S of ≤ kλ labels,
there are length ≤ dλ switching paths avoiding S to all, except possibly at
most ∆λ, vertices x ∈ R.

Notice that v λ-reaches a set R exactly when it (kλ, dλ,∆λ)-reaches R, as
defined in Section 2.3. To complement the notion of “reaching” we introduce
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a notion of “bypassing”. Informally a set B is bypassed by a vertex v if v
doesn’t reach anything big inside B.

Definition 4.4 (λ-bypassing). For a vertex v in a labelled digraph D and a
set B ⊆ V (D), we say that v λ-bypasses B if v doesn’t λ-reach any R ⊆ B
with |R| ≥ γλ|D|.

The third key definition is that of a λ-component. Recall that when
studying ordinary undirected graphs a connected component C is a set where
every pair x, y ∈ C is connected by a path, and no pair x ∈ C, z 6∈ C is
connected by a path. Intuitively a λ-component is similar to this, with “every
pair” replaced by “almost every pair” and “no pair” replaced by “almost no
pair”.

Definition 4.5 (λ-component). A set of vertices C in a labelled digraph D
is a λ-component if for any vertex v ∈ C, there is a set Rv ⊆ V (D) with
|Rv 4 C| ≤ δn such that the following hold.

(i) v λ-reaches Rv.

(ii) v (λ− 3)-bypasses Rv.

Notice that for a labelled digraph D it is far from clear that λ-components
exist in D. Section 4.2 will be devoted to proving that every properly labelled
digraph D, has λ-components for suitable λ.

4.1. Basic properties

Here we establish many basic properties of λ-reaching, λ-bypassing, and
λ-components. The first property is that reaching or bypassing a set W
is preserved by passing to a subset of W , and by moving λ in a suitable
direction.

Observation 4.6. Let D be a labelled digraph, v ∈ V (D), R,B ⊆ V (D),
and λ ∈ N.

(i) Monotonicity of reaching: Let λ+ ≥ λ and R− ⊆ R. Then v
λ-reaches R =⇒ v λ+-reaches R−.

(ii) Monotonicity of bypassing: Let λ− ≤ λ and B− ⊆ B. Then v
λ-bypasses B =⇒ v λ−-bypasses B−.
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Proof. For (i), let S be a set of kλ+ labels. Since kλ+ ≤ kλ and v λ-reaches
R, there are length ≤ dλ switching paths from v to all except at most ≤ ∆λ

vertices in R. Since dλ+ ≥ dλ and ∆λ+ ≥ ∆λ, these same paths give length
≤ dλ+ switching paths from v to all except at most≤ ∆λ+ vertices in R− ⊆ R.

For (ii), let R be a subset of B− which is λ−-reached by v. Since λ ≥ λ−,
by part (i) we know that v λ-reaches R. Since R ⊆ B− ⊆ B and v λ-bypasses
B, we get that |R| ≤ γλ|D|. Since γλ− ≥ γλ we get that |R| ≤ γλ−|D|. Since
R was an arbitrary subset of B− which is λ−-reached by v, we have proved
that v λ−-bypasses B−.

Since the above observation is extremely fundamental and basic we will
not always explicitly refer to it throughout its many applications. The next
observation provides trivial conditions for sets to be reached or bypassed by
a vertex.

Observation 4.7. Let D be a labelled digraph, X0 the set of non-vertex labels
in D, v ∈ V (D), R,B ⊆ V (D), and λ ∈ N.

(i) Reaching small sets: |R| ≤ ∆λ =⇒ v λ-reaches R.

(ii) Bypassing small sets: |B| < γλ|D| =⇒ v λ-bypasses B.

(iii) Reaching neighborhoods: If D is out-properly labelled then v 3-
reaches N+

X0
(v).

Proof. For (i), we can take the family of paths for the definition of v λ-
reaching R to be empty. For (ii), notice that every subset R ⊆ B has
|R| ≤ |B| < γλ|D| regardless of whether R is reached by v or not.

For (iii), notice that ∆3 ≥ k3. Let S be a set of≤ k3 labels. Notice that for
every y ∈ N+

X0\S(v)\S, the edge vy is a length 1 ≤ d3 switching path from v to

y avoiding S. Since D is properly coloured we have |N+
X0

(v)\(N+
X0\S(v)\S)| ≤

|S| ≤ k3 ≤ ∆3, and so we have enough paths for the definition of v λ-reaching
N+
X0

(v).

Observation 4.6 shows that if R is λ-reached by v, we can pass to a subset
of R and still have it λ-reached. We will sometimes want to increase the size
of a set R and know that it is still reached by v. The following lemma shows
that we can add the vertex v itself to R and still know that R∪{v} is reached
by v with the same parameter λ.
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Observation 4.8 (Reaching one more vertex). v λ-reaches R =⇒ v λ-
reaches R ∪ {v}.

Proof. Let S be a set of ≤ kλ labels. Recall that {v} is a length 0 ≤ dλ
switching path from v to v avoiding S (using the fact that the first vertex
of a path is allowed to be in S in the definition of “avoids”.) Also, since v
λ-reaches R, there are length ≤ dλ switching paths avoiding S to all except
at most ∆λ vertices of R. These paths, together with {v}, give the required
paths to show that v λ-reaches R ∪ {v}.

Consider a set Rv as in the definition of λ-component i.e. Rv is λ-reached
by v and Rv is (λ − 3)-bypassed by v. By Observation 4.8 Rv ∪ {v} is
λ-reached by v, and by the monotonicity of bypassing Rv ∪ {v} is (λ − 3)-
bypassed by v. This shows that without affecting anything we could have
added the condition “v ∈ Rv” to the definition of λ-component.

The next two lemmas show that reaching and bypassing are preserved by
unions, as long as we weaken the parameter λ slightly.

Lemma 4.9 (Reaching unions). For m ≤ γ−1
λ , suppose that a vertex v λ-

reaches sets R1, . . . , Rm ⊆ V (D). Then v (λ+ 3)-reaches
⋃m
i=1Ri.

Proof. Let S be a set of kλ+3 labels. Since kλ+3 ≤ kλ and v λ-reaches Ri,
there are length ≤ dλ switching paths avoiding S to all, except possibly ∆λ,
vertices x ∈ Ri for each i. Therefore there are length ≤ dλ ≤ dλ+3 switching
paths avoiding S to all, except possibly m∆λ ≤ γ−1

λ ∆λ = twr(λ+2)twr(λ) ≤
twr(λ+ 3) = ∆λ+3 vertices in

⋃m
i=1 Ri.

A similar lemma holds for bypassing.

Lemma 4.10 (Bypassing unions). For m ≤ γ−1
λ−1, suppose that a vertex v

λ-bypasses sets B1, . . . , Bm ⊆ V (D). Then v (λ− 1)-bypasses
⋃m
i=1 Bi.

Proof. Suppose that v (λ − 1)-reaches a set R ⊆
⋃m
i=1Bi. Without loss of

generality we can suppose that B1, . . . , Bm are ordered so that |R ∩ B1| ≥
|R ∩Bj| for j > 1. Since R =

⋃m
i=1 R ∩Bi we have |R ∩B1| ≥ |R|/m. From

the monotonicity of reaching, v λ-reaches R ∩ B1. Since v λ-bypasses B1,
this implies |R ∩ B1| < γλ|D|. This gives |R| ≤ m|R ∩ B1| ≤ mγλ|D| ≤
γ−1
λ−1γλ|D| = twr(λ + 1)twr(λ + 2)−1|D| ≤ twr(λ + 1)−1|D| = γλ−1|D|. Since
R was arbitrary, we have proved that v (λ− 1)-bypasses

⋃m
i=1Bi.
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Recall that “two vertices u and v being connected by a path” is a tran-
sitive relation on vertices in an graph. This transitivity is used to show
that connected components in a graph are equivalence classes. The following
lemma shows that “reaching” also has a kind of transitive property. The
lemma plays a similar role in showing that λ-components exist.

Lemma 4.11 (Transitivity of reaching). For a labelled digraph D and 1 ≤
λ ≤ λmax, suppose that we have a vertex v ∈ V (D), and R such that v λ-
reaches R. Suppose that we have distinct vertices x0, . . . , x∆λ

∈ R and a set
W such that xi λ-reaches W for each i. Then v (λ+ 1)-reaches W .

Proof. Let S be a set of kλ+1 labels. Since v λ-reaches R and kλ+1 ≤ kλ, there
is some i ∈ 0, . . . ,∆λ such that there is a length ≤ dλ switching path P from
v to xi avoiding S. Since xi λ-reaches W and |S| + |P | ≤ kλ+1 + 3dλ ≤ kλ,
there is a length ≤ dλ switching path Pw avoiding S and P from xi to all,
except ∆λ vertices of w ∈ W .

Using Lemma 4.2, the paths P + Pw are length ≤ 2dλ ≤ dλ+1 switching
paths avoiding S to all except at most ∆λ ≤ ∆λ+1 vertices w ∈ W . This
proves the lemma.

A consequence of Observation 4.7 (iii) is that components cannot be much
smaller than the neighborhoods of vertices they contain.

Lemma 4.12 (Components are larger than neighbourhoods). Let D be a
out-properly labelled, directed graph on n vertices with X0 the set of non-
vertex labels in D, and 6 ≤ λ ≤ λmax. For any λ-component C and v ∈ C
we have |C| ≥ |N+

X0
(v)| − δn− γλ−3n.

Proof. By the definition of C being a λ-component, there is a set Rv with
|Rv \ C| ≤ δn such that v (λ − 3)-bypasses Rv. By Observation 4.7 (iii)
and the monotonicity of reaching, v (λ − 3)-reaches N+

X0
(v). This gives

|N+
X0

(v) ∩Rv| ≤ γλ−3n which implies the lemma:

|C| ≥ |N+
X0

(v)| − |N+
X0

(v) ∩ C|
≥ |N+

X0
(v)| − |N+

X0
(v) ∩ C ∩Rv| − |C \Rv| ≥ |N+

X0
(v)| − δn− γλ−3n.
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4.2. Constructing λ-components

The goal of this section is to show that λ-components exist for suitable
λ. The first step towards this is to show that for any vertex v and number
λ, there is a set Rv ⊆ V (D) possessing the two properties Rv has in the
definition of λ-component.

Lemma 4.13. For all vertices v in a labelled digraph D and 1 ≤ λ ≤ λmax,
there is a set R ⊆ V (D) such that v (λ+ 3)-reaches R and v λ-bypasses R.

Proof. We define sets of vertices R0, R1, R2, . . . , Rm recursively as follows.

• Let R0 = ∅.

• For each i ≥ 1, if possible, choose Ri to be any set disjoint from R0 ∪
· · · ∪Ri−1 which is λ-reached by v, and also |Ri| ≥ γλ|D|.

• Otherwise, if no such Ri exists, we stop with m = i− 1.

Notice that the sets R1, . . . , Rm are all disjoint and satisfy |Ri| ≥ γλ|D| which
implies that m ≤ γ−1

λ . Set R = R1 ∪ · · · ∪Rm.
By definition of m, v λ-bypasses R—indeed otherwise we could choose a

set Rm+1 of size γλ|D| disjoint from R which is λ-reached by v, contradicting
the fact that we stopped at m. By Lemma 4.9 v (λ + 3)-reaches R. This
completes the proof.

Notice that in the above lemma would be stronger if it produced a set
R with R λ-reached by v and R λ′-bypassed by v for λ′ > λ (rather than
λ′ < λ as Lemma 4.13 gives us.) The next lemma tries to prove something
like this—it produces two sets R and B which are “nearly complementary”
such that v λ-reaches R and λ′-bypasses B for λ′ > λ.

Lemma 4.14. Let D be a labelled digraph on n vertices, λ0 ∈ N with 43δ−1 ≤
λ0 ≤ λmax, and v ∈ V (D). There are two sets of vertices R and B satisfying
the following.

(i) |V (D) \ (R ∪B)| ≤ δn/3.

(ii) There is a λ with λ0 − 42δ−1 ≤ λ ≤ λ0 such that

• v (λ− 4)-reaches R.

• v λ-bypasses B.
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Proof. Define λ1, . . . , λ6δ−1 , R1, . . . , R6δ−1 as follows.

• For each i, set λi = λi−1 − 7.

• Let Ri be a set which is (λi + 3)-reached by v and with Ri λi-bypassed
by v. Such a set exists by Lemma 4.13.

We show that there is some index m satisfying a property like part (i) of the
lemma.

Claim 4.15. There is some m ∈ {1, . . . , 6δ−1} for which |V (D) \ (Rm ∪
Rm−1)| ≤ δn/3.

Proof. Suppose for the sake of contradiction that |V (D)\(Ri∪Ri−1)| > δn/3
for all i = 1, . . . , 6δ−1. Notice that we have |Ri∩Ri−1| ≤ γλi−1

n (since v λi−1-
bypasses Ri−1, v (λi + 3)-reaches Ri∩Ri−1, and λi + 3 ≤ λi−1.) We also have
|Ri−1 \Ri| = |V (D) \ (Ri ∪Ri−1)| > δn/3 for i < 6δ−1. Combining these, we
get the following

|Ri| = |Ri ∩Ri−1|+ |Ri ∩Ri−1|
= |Ri−1| − |Ri−1 \Ri|+ |Ri ∩Ri−1| < |Ri−1| − (δ/3− γλi−1

)n.

Notice that for all i ≤ 6δ−1 we have λi ≥ 1, and so γλi ≤ λ−1
max ≤ δ/12 which

implies |Ri| < |Ri−1| − δn/4. Iterating this gives 0 ≤ |Ri| < |R1| − (i −
1)δn/4 ≤ n− (i− 1)δn/4. This is a contradiction for i = 6δ−1.

Set R = Rm, B = Rm−1 and λ = λm−1. Then v (λ− 4)-reaches Ri and λ-
bypasses B by the constructions of Ri and Ri−1. We have |V (D)\ (R∪B)| ≤
δn/3 by choice of m. Finally we have λ0 ≥ λ ≥ λ0 − 7m ≥ λ0 − 42δ−1.

As a prelude to constructing components we give a condition under which
a singleton {v} is a λ-component.

Lemma 4.16. Let D be a labelled digraph on n ≥ N0 vertices and 4 ≤
λ ≤ λmax. Suppose that v λ-bypasses B with |B| ≤ δn/2. Then {v} is a
λ-component.

Proof. To prove the lemma we need to choose a set Rv and show that it
satisfies all the properties of the set Rv in the definition of λ-component.
Apply Lemma 4.13 to get a set Rv which is λ-reached by v and with Rv

(λ − 3)-bypassed by v. Notice that since v λ-bypasses B, we must have
|Rv ∩ B| ≤ γλn. This gives |Rv 4 {v}| ≤ |Rv| + 1 ≤ |Rv ∩ B| + |B| + 1 ≤
γλn+ δn/2 + 1 ≤ δn.
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The following lemma is a purely technical tool which we will need. A
r-uniform multihypergraph H with n vertices and m edges is a family of m
size r subsets of [n] with the possibility of H containing several copies of the
same subset.

Lemma 4.17. Let H be a γn-uniform multihypergraph with n vertices and
m edges. Then, for any t with γ/2 ≥ 2t/m, there are t edges T1, . . . , Tt ∈ H
with |T1 ∩ · · · ∩ Tt| ≥

(
γ
2

)t
n.

Proof. Let T be a set of t distinct edges of H chosen uniformly at random
from all such sets. To prove the lemma it is sufficient to show that the
expected size of the intersection of the edges in T is at least

(
γ
2

)t
n. For any

vertex v ∈ V (H), let d(v) be the number of edges of H containing v. Let
V≥t = {v ∈ V (H) : d(v) ≥ t}. By linearity of expectation we have the
following.

E

(∣∣∣∣∣ ⋂
E∈T

E

∣∣∣∣∣
)

=
∑

v∈V (H)

P

(
v ∈

⋂
E∈T

E

)
=
∑
v∈V≥t

P

(
v ∈

⋂
E∈T

E

)

=
∑
v∈V≥t

(
d(v)
t

)(
m
t

) ≥ ∑
v∈V≥t

(
(d(v)− t)

m

)t
.

The inequality comes from “
(
d
t

)/(
m
t

)
≥ ((d− t)/m)t for d ≥ t.” Using con-

vexity of f(x) = xt we can prove the lemma.

E

(∣∣∣∣∣ ⋂
E∈T

E

∣∣∣∣∣
)
≥
∑
v∈V≥t

(
(d(v)− t)

m

)t
≥

∑
v∈V≥t

(d(v)− t)
nm

t

n

≥
(
γm− 2t

m

)t
n ≥

(γ
2

)t
n.

The third inequality uses
∑

v∈V (G) d(v) = γnm and
∑

v∈V (G)\V≥t d(v) ≤ tn.

The last inequality comes from γ/2 ≥ 2t/m.

The following lemma is the main result of this section. It implies that
for a given λ0, there is a λ-component C for some λ which is close to λ0.
In addition the lemma gives some control over where the component C is
located—given any set B0 which is λ0-bypassed, we can choose C to be
outside B0.
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Lemma 4.18. Let D be a labelled digraph on n ≥ N0 vertices and 87δ−2 ≤
λ0 ≤ λmax. Suppose we have v0 ∈ V (D) and B0 ⊆ V (D) such that v0 ∈ B0

and v0 λ0-bypasses B0. Then there is a nonempty C ⊆ B0 such that C is a
λ-component with λ0 − 87δ−2 ≤ λ ≤ λ0.

Proof. We start with the following claim.

Claim 4.19. There is a vertex v′ ∈ B0, λ′ ∈ [λ0 − 86δ−2, λ0], and a set
B′ ⊇ B0 with the following properties.

• v′ λ′-bypasses B′.

• For every u ∈ B′, if there is a set Bu ⊃ B′ such that u (λ′ − 43δ−1)-
bypasses Bu, then |Bu| < |B′|+ δn/2.

Proof. Using B0, v0, and λ0 from the lemma, we define B1, . . . , Bm, v1, . . . ,
vm, and λ1, . . . , λm as follows.

• For each i, set λi+1 = λi − 43δ−1.

• For each i, if possible, choose a vertex vi+1 ∈ Bi and a set Bi+1 ⊃ Bi

such that vi+1 λi+1-bypasses Bi+1 and |Bi+1| ≥ |Bi|+ δn/2.

• Otherwise, if no such pair of vi+1 and Bi+1 exists, then stop with m = i.

Notice that since |Bi+1| ≥ |Bi| + δn/2 for i < m, we stop with m ≤ 2δ−1.
Let λ′ = λm, v′ = vm, and B′ = Bm. Since m ≤ 2δ−1, we have λ′ =
λ0 − 43δ−1m ≥ λ0 − 86δ−2. We have B′ = Bm ⊇ Bm−1 ⊇ · · · ⊇ B0 and
v′ ∈ Bm−1 ⊆ B0 as required. The vertex v′ λ′-bypasses B′ by choice of vm
and Bm. The fact that “for every u ∈ B′, if there is a set Bu ⊃ B′ such that
u (λ′− 43δ−1)-bypasses Bu, then |Bu| < |B|+ δn/2” is equivalent to the fact
that we stopped at m.

Apply Lemma 4.14 to v′ and λ′ in order to obtain sets R and B and
λ′′ ∈ [λ′ − 42δ, λ′] such that |V (D) \ (R ∪B)| ≤ δn/3, v′ (λ′′ − 4)-reaches R,
and v′ λ′′-bypasses B. By Lemma 4.10 and the monotonicity of bypassing,
v′ (λ′′ − 1)-bypasses B ∪B′.

We make the following definition

S = {x ∈ R : x (λ′′ − 2)-reaches some T ⊆ B ∪B′ with |T | ≥ γλ′′−3n}.

From the definition of S and the monotonicity of reaching, we have that
for every v ∈ R\S the vertex v (λ′′−3)-bypasses B∪B′. Using Lemma 4.17
and the “transitivity of reaching” we show that S is small.
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Claim 4.20. |S| ≤ 4∆λ′′γ
−1
λ′′ .

Proof. Suppose for the sake of contradiction that |S| > 4∆2
λ′′γ

−1
λ′′ . For each

s ∈ S, choose some set Ts ⊆ B ∪ B′ with |Ts| = γλ′′−3n which is (λ′′ −
2)-reached by s. Let H = {Ts : s ∈ S}. Notice that H is an (γλ′′−3n)-
uniform multihypergraph with |S| edges. Notice that |S| > 4∆λ′′γ

−1
λ′′ implies

γλ′′−3/2 ≥ 2(∆λ′′−2 + 1)/|S|. Therefore we can apply Lemma 4.17 to H with
t = ∆λ′′−2+1 and γ = γλ′′−3 in order to find ∆λ′′−2+1 sets T ′0, . . . , T

′
∆λ′′−2

∈ H
with ∣∣∣∣∣∣

∆λ′′−2⋂
i=0

T ′i

∣∣∣∣∣∣ ≥
(γλ′′−3

2

)∆λ′′−2+1

n > γλ′′−1n.

The second inequality comes from the fact that γ−1
λ′′−1 = twr(λ′′ + 1) ≥

(2twr(λ′′ − 1))twr(λ′′−2)+1 = (2/γλ′′−3)∆λ′′−2+1. By Lemma 4.11 applied with

λ = λ′′ − 2, v = v′, R = R, W =
⋂∆λ′′−2

i=0 T ′i , and xi the vertex of S which

(λ′′−2)-reaches T ′i , we get that v′ (λ′′−1)-reaches
⋂∆λ′′−2

i=0 T ′i . This contradicts
v′ (λ′′ − 1)-bypassing B ∪B′.

Let C = R\(S∪B′∪B) and λ = λ′′−2. Since C ⊆ B′ andB′ ⊇ B0 we have
C ⊆ B0. From the definitions of λ′ and λ′′ we have that λ0−87δ−2 ≤ λ ≤ λ0.

Claim 4.21. C is a λ-component.

Proof. For each v ∈ C apply Lemma 4.13 to get a set Rv which is λ-reached
by v and with Rv (λ − 3)-bypassed by v. To prove the claim, it is enough
to show that |Rv 4 C| ≤ δn. We’ll do this by showing |Rv \ C| ≤ δn/2 and
|C \Rv| ≤ δn/2.

First we show that |Rv \ C| ≤ δn/2. Notice that C = R ∩ S ∩ B′ ∩ B =
(R ∪ B) ∩ S ∩ B′ ∩ B. Notice that since v ∈ R \ S and λ = λ′′ − 2 we
have |Rv ∩ (B ∪ B′)| ≤ γλ′′−3n. Combining these with |S| ≤ 4∆λ′′γ

−1
λ′′ and

|V (D) \ (R ∪B)| ≤ δn/3 we get

|Rv \ C| = |Rv \ ((R ∪B) ∩ S ∩B′ ∩B)|
= |Rv ∩ ((R ∪B) ∪ S ∪B′ ∪B)|
≤ |Rv ∩ (R ∪B)|+ |Rv ∩ S|+ |Rv ∩ (B ∪B′)|
≤ |V (D) \ (R ∪B)|+ |S|+ |Rv ∩ (B ∪B′)|
≤ δn/3 + 4∆λ′′γ

−1
λ′′ + γλ′′−3n ≤ δn/2.
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The last inequality comes from n ≥ N0 and λ ≤ λmax.
Next we show that |C\Rv| ≤ δn/2. Using v ∈ R\S and the monotonicity

of bypassing we get that v (λ− 3)-bypasses B′. By Lemma 4.10, v (λ− 4)-
bypasses Rv∪B′. Now using the monotonicity of bypassing we have a vertex
v ∈ B′ and a set Rv∪B′ ⊇ B′ such that v (λ′−43δ−1)-bypasses Rv∪B′. From
Claim 4.19 we have |Rv ∪ B′| ≤ |B′|+ δn/2 which implies |Rv \ B′| ≤ δn/2.
This gives us

|C \Rv| = |C ∩Rv| ≤ |Rv \B′|+ |C ∩B′| = |Rv \B′| ≤ δn/2.

We have now proved that C satisfies all the requirements of the lemma
aside from “C is nonempty”. Thus, for the remainder of the proof we can
assume that C is empty, or equivalently R ⊆ S ∪ B′ ∪ B. We’ll show that
{v′} is a λ-component satisfying the conditions of the lemma. Notice that
{v′} ⊆ B0 holds as a consequence of the definition of v′ in Claim 4.19.

By |S| ≤ 4∆λ′′γ
−1
λ′′ ≤ γλ+1n and Observation 4.7 (ii), v (λ + 1)-bypasses

S. By Lemma 4.10, v′ λ-bypasses S∪B′∪B. From R ⊆ S∪B′∪B we obtain
|V (D)\ (S∪B′∪B)| = |V (D)\ (R∪S∪B′∪B)| ≤ |V (D)\ (R∪B)| ≤ δn/3.
By Lemma 4.16 applied with v = v′, λ = λ, and B̂ = S∪B′∪B, we have that
C ′ = {v′} is a λ-component which satisfies the conditions of the lemma.

We can iteratively apply Lemma 4.18 to find a sequence of λ-components
for decreasing λ. We’ll use this sequence in the proof of Theorem 4.1.

Lemma 4.22. Fix m = 4δ−1 and let D be a labelled digraph on n ≥ N0

vertices. For any v ∈ V (D) we can choose C1, . . . , Cm and λ1, . . . , λm such
that for each i, Ci is a λi-component with |Ci \ Ci+1| ≤ δn and 1 ≤ λi+1 −
88δ−2 ≤ λi ≤ λi+1 − 9 ≤ λmax for i = 1, . . . ,m.

In addition there is a length ≤ dλmax/2 switching path which starts at v
and passes through all of C1, . . . , Cm.

Proof. We will choose vertices v1, . . . , vm+1, paths P1, . . . , Pm+1, sets R1, . . . ,
Rm+1, numbers λ1, . . . , λm+1, and components C1, . . . , Cm. They will have
the following properties.

(i) For i ≤ m, 1 ≤ λi+1 − 88δ−2 ≤ λi ≤ λi+1 − 9 ≤ λmax/4.

(ii) For i ≤ m+ 1, vi λi-reaches Ri and vi (λi − 3)-bypasses Ri.
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(iii) For i ≤ m + 1, Pi is a switching path from v to vi passing through
vi+1, . . . , vm. Also |Pi| ≤ dλi+1

+ dλi+2
+ · · ·+ dλm .

(iv) For i ≤ m, Ci is a λi-component with Ci ⊆ Ri+1, vi ∈ Ci, and |Ci 4
Ri| ≤ δn.

Once we have constructed these sequences, then it is easy to see that the
components C1, . . . , Cm, the numbers λ1 . . . , λm, and the path P1 satisfy the
conditions of the lemma. Indeed Ci is a λi-component with |Ci \ Ci+1| ≤
|Ri+1 \ Ci+1| ≤ |Ri+1 4 Ci+1| ≤ δn by (iv). By (i), (iii), and (iv) the path
P1 is a length ≤ mdλm ≤ md(λmax/4) ≤ dλmax/2 switching path starting from
v which passes through the vertex vi ∈ Ci for i = 1, . . . ,m.

We will construct vi, Pi, Ri, λi, and Ci in reverse order starting with i =
m+1 and ending with i = 1. Let vm+1 = v, Pm+1 = {v}, and λm+1 = λmax/4.
Use Lemma 4.13 to find a set Rm+1 such that vm+1 (λm+1)-reaches Rm+1 and
(λm+1−3)-bypasses Rm+1. By construction, conditions (i) – (iii) are satisfied
for vm+1, Pm+1, Rm+1, and λm+1. Condition (iv) doesn’t need to be checked
since we do not have a component Cm+1.

For each i ≤ m + 1, suppose that we have constructed vi, Pi, Ri, and λi.
We build vi−1, Pi−1, Ri−1, λi−1, and Ci−1 as follows.

By the monotonicity of bypassing and Observation 4.8, vi λi-reaches Ri∪
{vi} and (λi− 3)-bypasses Ri ∪ {vi}. Since vi λi-reaches Ri∪{vi} and |Pi| ≤
3idλm+1 ≤ kλi , there is a subset R′i ⊆ Ri ∪ {vi} of order at least |Ri| − ∆λi

such that there are length ≤ dλi switching paths from vi to all r ∈ R′i
avoiding Pi. Without loss of generality we can assume vi ∈ R′i (since there
is a length 0 switching path from vi to vi avoiding any set of labels.) By
∆λi ≤ γλi−3n, Observation 4.7 (ii), and Lemma 4.10, vi (λi− 4)-bypasses R′i.
Apply Lemma 4.18 with v0 = vi, λ0 = λi− 9, and B0 = R′i in order to find a
nonempty λ-component Ci−1 contained in R′i for some λi − 9− 87δ−2 ≤ λ ≤
λi− 9. Let λi−1 = λ. Let vi−1 be any vertex in Ci−1. Since vi−1 ∈ Ci−1 ⊆ R′i,
there is a length ≤ dλi switching path Q from vi to vi−1 which avoids Pi. Let
Pi−1 = Pi +Q. Let Ri−1 be the set from the definition of “λi−1-component”
such that |Ri−1 4 C| ≤ δn, vi−1 λi−1-reaches Ri−1, and (λi−1 − 3)-bypasses
Ri−1.

We claim that vi−1, Pi−1, Ri−1, λi−1, and Ci−1 satisfy properties (i) – (iv).
For property (i) we have λi−88δ−2 ≤ λi−9−87δ−2 ≤ λi−1 ≤ λi−9 and also
λi−1 ≥ λm+1−(m−i+1)88δ−2 ≥ λmax−252δ−3 ≥ 1. Property (ii) holds since
we chose Ri−1 so that vi−1 λi−1-reaches Ri−1 and (λi−1−3)-bypasses Ri−1. To
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see that property (iii) holds, notice that it held for Pi, and that Q is a length
≤ dλi−1

switching path avoiding Pi from vi to vi−1. Using Lemma 4.2 we
have that Pi−1 = Pi+Q is a length e(Pi)+e(Q) ≤ dλi−1

+ · · ·+dλm switching
path from v to vi−1. For property (iv), Ci−1 being a λi−1-component with
Ci−1 ⊆ Ri comes from our application of Lemma 4.18, vi−1 ∈ Ci−1 comes
from our choice of vi−1, and |Ci−1 4 Ri−1| ≤ δn comes from the choice of
Ri−1.

4.3. Growth of λ-components

Notice that so far in Section 4, “amidstness” has only come up in the
statement of Theorem 4.1. In this section we build a link between amidstness
and λ-components. First we will need a more precise notion of amidstness
which incorporates the parameter λ.

Definition 4.23. Let u and v be two vertices in an edge-labelled, directed
graph D, c a label, and S a set of labels. We say that c is (λ, S)-amidst u
and v if c 6∈ S and there is a length ≤ 2dλ switching path P = (u, p1, . . . , pd, v)
avoiding S from u to v such that the following hold.

(i) There are no edges of P labelled by c.

(ii) If c is a vertex of D then c is in {p1, . . . , pd, v}.

The following is an extension of Lemma 4.2. It shows that when we
concatenate two switching paths, then the vertex at which we concatenate
automatically becomes amidst the endpoints of the concatenated path.

Lemma 4.24. In a labelled digraph D, let S be a set of vertices, P a length
≥ 1 and ≤ dλ switching path from u to x which avoids S, and Q a length
≤ dλ switching path from x to v which avoids S and P . Then P+Q witnesses
x being (λ, S)-amidst u and v.

Proof. Using Lemma 4.2 we have that P+Q is a length ≤ 2dλ switching path
avoiding S from u to v which passes through x. We have x 6∈ S since P avoids
S, P ends with x, and |P | ≥ 2. Part (ii) of the definition of (λ, S)-amidst
holds since x ∈ P + Q and x is not the starting vertex of P . It remains to
show that part (i) of the definition of (λ, S)-amidst holds. Note that P has
no edges labelled by x since P is a switching path ending with x, and Q has
no edges labelled by x since Q avoids P 3 x. These imply that P + Q has
no edges labelled by x.
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Recall that the idea behind “amidstness” was to identify labels which can
be used to extend switching paths. The next lemma makes this precise.

Lemma 4.25. Let x be a label in a labelled digraph D which is (λ, S)-amidst
v and y. Suppose that we have a vertex z with z 6∈ S and the edge yz present
and labelled by x. Then there is a length ≤ 2dλ + 1 switching path P from v
to z avoiding S.

Proof. Since x is (λ, S)-amidst u and v, there is a length ≤ 2dλ switching
path Q from v to y avoiding S and having no edges labelled by x. In addition
if x is a vertex then x ∈ V (Q) \ {v}. If z ∈ Q, then we are done by choosing
P to be the subpath of Q ending with z. Otherwise we take P = Q + z
to get a path from v to z. To see that this is a switching path first notice
that the label of the last edge yz is x which is not present on the edges of
P . In addition if x is a vertex then x ∈ V (Q) \ {v} = V (P ) \ {v, z}. Thus
P is a switching path. Notice that x 6∈ S since x is (λ, S)-amidst v and y.
Combining this with z 6∈ S and the fact that Q avoided S shows that P
avoids S. Thus P is a length ≤ 2dλ + 1 switching path from v to z avoiding
S as required.

Recall that for a label x and a vertex v, N+
{x}(v) denotes the set of vertices

y with vy an edge labelled by x. In a out-properly labelled digraph we always
have |N+

{x}(v)| ∈ {0, 1}. For a labelled digraph D, let

L+(D) = {(x, y) : x is a label and y ∈ V (D) with N+
{x}(y) 6= ∅}.

Equivalently we have that L+(D) is the set of pairs (x, y) with x a label and
y ∈ V (D) such that there is an edge in D starting at y labelled by x.

The following lemma gives a connection between the notions of amidstness
and λ-components. It shows that for a λ-component C, most triples of the
form (v, x, y) ⊆ C × (X0 ∪ C)× C have x amidst v and y.

Lemma 4.26. Let D be an out-properly labelled digraph with |D| = n ≥ N0,
λ ∈ N with 3 ≤ λ ≤ λmax, X0 the set of non-vertex labels of D, and C a λ-
component. Fix a vertex v ∈ C. To every set of labels S with |S| ≤ kλ − 3dλ
we can assign sets CS ⊆ C and ZS ⊆ (X0 ∪ CS) × CS with the following
properties.

(i) For every (x, y) ∈ ZS, the label x is (λ, S)-amidst v and y.
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(ii) |CS| ≥ |C| − 2δn and |ZS| ≥ |(X0 ∪ CS)× CS| − 4δn|CS|.

(iii) For two sets S and T we have |L+(D) ∩ (ZS \ ZT )| ≤ 6∆λn.

Proof. Since C is a λ-component, for every u ∈ C there is a set Ru ⊆ C with
|Ru| ≥ |C| − δn so that u λ-reaches Ru. For a set of labels S, let Ru

S be the
set of y ∈ Ru for which there is a length ≤ dλ switching path from u to y
avoiding S. For each u, S and y ∈ Ru

S, fix such a switching path P u,y
S . Since

u λ-reaches Ru, we have

|Ru \Ru
S| ≤ ∆λ for all S with |S| ≤ kλ. (3)

For a pair of sets S and T with |S|, |T | ≤ kλ, we trivially have |Ru
S \ Ru

T | ≤
|Ru \Ru

T | which implies |Ru
S \Ru

T | ≤ ∆λ. We now define the sets CS and ZS.

CS = Rv
S \ {v},

Z0
S = {(x, y) ∈ X0 × CS : P v,y

S avoids x and x 6∈ S},
Z1
S = {(x, y) ∈ CS × CS : y ∈ Rx

S∪P v,xS
},

ZS = Z0
S ∪ Z1

S.

Notice that we have ZS ⊆ (X0 ∪ CS) × CS. For S with |S| ≤ kλ − 3dλ, (3)
implies that |CS| ≥ |Rv| −∆λ− 1 ≥ |C| − 2δn as required by part (ii) of the
lemma. The next two claims prove “|ZS| ≥ |(X0 ∪ CS) × CS| − 4δn|CS|”,
completing the proof of part (ii).

Claim 4.27. For any S with |S| ≤ kλ−3dλ we have |(X0×CS)\Z0
S| ≤ kλ|CS|.

Proof. We have (X0 × CS) \ Z0
S ⊆ (S × CS) ∪

⋃
y∈CS

(
P v,y
S × {y}

)
. Using

|S| ≤ kλ − 3dλ and |P v,y
S | ≤ 3dλ, this implies |(X0 × CS) \ Z0

S| ≤ |S||CS| +∑
y∈CS |P

v,y
S | ≤ kλ|CS|.

Claim 4.28. For any S with |S| ≤ kλ − 3dλ we have |(CS × CS) \ Z1
S| ≤

2δn|CS|.

Proof. Notice that we have

|Z1
S| =

∑
x∈CS

|Rx
S∪P v,xS

∩ CS| =
∑
x∈CS

(|CS| − |CS \Rx
S∪P v,xS

|). (4)
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We will bound the second term by the following

|CS \Rx
S∪P v,xS

| ≤ |C \Rx
S∪P v,xS

| ≤ |C \Rx|+ |Rx \Rx
S∪P v,xS

| ≤ δn+ ∆λ ≤ 2δn.

The second last inequality comes from |C \ Rx| ≤ δn, |S ∪ P v,x
S | ≤ kλ,

and (3). Plugging the above into (4) we get |Z1
S| ≥

∑
x∈CS(|CS| − 2δn) =

|CS|2 − 2δn|CS| as required.

From Claims 4.27 and 4.28, n ≥ N0, and λ ≤ λmax we get |ZS| ≥ |(X0 ∪
CS)×CS| − kλ|CS| − 2δn|CS| ≥ |(X0 ∪CS)×CS| − 4δn|CS|, completing the
proof of part (ii) of the lemma.

Next we prove part (i) of the lemma.

Claim 4.29. Let S be a set of ≤ kλ − 3dλ labels and (x, y) ∈ ZS. Then the
label x is (λ, S)-amidst v and y.

Proof. Suppose x ∈ X0, or equivalently (x, y) ∈ Z0
S. By definition of Z0

S,
we have x 6∈ S. The path P v,y

S is a length ≤ dλ switching path from v to y
avoiding S. Since (x, y) ∈ Z0

S, P v,y
S also avoids x, and so witnesses x being

(λ, S)-amidst v and y.
Suppose x ∈ CS, or equivalently (x, y) ∈ Z1

S. Since x ∈ CS ⊆ Rv
S, recall

that we have a length ≤ dλ switching path P v,x
S from v to x avoiding S.

Since v 6∈ CS, we have x 6= v, which implies that P v,x
S has length ≥ 1. Since

y ∈ Rx
S∪P v,xS

, we have a length ≤ dλ switching path P x,y
S∪P v,xS

from x to y

avoiding S and P v,x
S . By Lemma 4.24 we have that Q = P v,x

S + P x,y
S∪P v,xS

is a

switching path witnessing x being (λ, S) amidst v and y.

The following two claims prove part (iii) of the lemma.

Claim 4.30. For S and T with |S|, |T | ≤ kλ − 3dλ we have |L+(D) ∩ (Z0
S \

Z0
T )| ≤ 2∆λn.
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Proof. We proceed as follows.

|(L+(D) ∩ (Z0
S \ Z0

T )| ≤ |L+(D) ∩ (X0 × CS \ Z0
T )|

≤ |L+(D) ∩ (X0 × CS \X0 × CT )|
+ |L+(D) ∩ (X0 × CT \ Z0

T )|
≤ |L+(D) ∩ (X0 × CS \X0 × CT )|+ kλ|CS|
= |L+(D) ∩ (X0 × (CS \ CT ))|+ kλ|CS|
≤ n|CS \ CT |+ kλ|CS|
≤ ∆λn+ kλ|CS|
≤ 2∆λn.

The first inequality comes from Z0
S ⊆ X0 × CS. The second inequality is an

instance of U \W ⊆ (U \ V ) ∪ (V \W ). The third inequality comes from
Claim 4.27. The equality is an instance of U×V \U×W = U×(V \W ). The
fourth inequality comes from |L+(D)∩((V (D)∪X0)×U)| =

∑
u∈U |N+(u)| ≤

n|U | which holds for any set of vertices U . The fifth inequality comes from
|Ru

S \Ru
T | ≤ ∆λ. The sixth inequality holds since kλ ≤ ∆λ for all λ ≥ 3.

Claim 4.31. For S and T with |S|, |T | ≤ kλ − 3dλ we have |Z1
S \ Z1

T | ≤
4∆λ|CS|.

Proof. Using the definitions of ZS and CS we have the following.

|Z1
S \ Z1

T | = |((CS \ CT )× CS) ∩ (Z1
S \ Z1

T )|+ |((CS ∩ CT )× CS) ∩ (Z1
S \ Z1

T )|

=
∑

x∈CS\CT

|CS ∩Rx
S∪P v,xS

|+
∑

x∈CS∩CT

|(CS ∩Rx
S∪P v,xS

) \ (CT ∩Rx
T∪P v,xT

)|

≤
∑

x∈CS\CT

|CS|+
∑

x∈CS∩CT

|CS \ CT |+
∑

x∈CS∩CT

|Rx
S∪P v,xS

\Rx
T∪P v,xT

|

≤ 4∆λ|CS|.

The first equality comes from Z1
S \Z1

T ⊆ CS×CS. The second equality comes
from Z1

S =
⋃
x∈CS{x}× (CS∩Rx

S∪P v,xS
) and Z1

T =
⋃
x∈CT {x}× (CT ∩Rx

T∪P v,xT
).

The first inequality comes from (U∩W )\(U ′∩W ′) ⊆ (U \U ′)∪(W \W ′). The
second inequality comes from (3), |S ∪ P v,x

S | ≤ kλ, and |T ∪ P v,x
T | ≤ kλ.

Claims 4.30 and 4.31 imply (iii), concluding the proof of the lemma.
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We now prove the main result of this section. The following lemma shows
that if we have a digraph D which doesn’t satisfy Theorem 4.1, then λ-
components in D have a special property—every vertex in a λ-component C
(λ + 1)-reaches a set R which is much larger than C. This lemma will later
be combined with Lemma 4.22 in order to show that all digraphs satisfy
Theorem 4.1.

Lemma 4.32. Let D be a out-properly labelled, digraph on n ≥ N0 vertices,
X0 the set of labels of D which are not vertices, and 3 ≤ λ ≤ λmax. Let C be
a λ-component in D, u ∈ V (D), and P a length ≤ dλmax switching path from
u to some v ∈ C. Then one of the following holds.

(i) There is a vertex y ∈ C, and a set of labels A amidst u and y such that
|N+

A (y)| < |A| − |X0|+ εn.

(ii) v (λ+ 1)-reaches a set R with |R| ≥ |C|+ (ε− 7δ)n.

Proof. Suppose that (i) doesn’t hold.

Claim 4.33. Let y ∈ C and A be a set of labels which are (λ, P )-amidst v
and y. Then |N+

A (y)| ≥ |A| − |X0|+ εn.

Proof. It is sufficient to show that every label in A is amidst u and y. Then
the claim follows since we are assuming that (i) doesn’t hold.

Fix a ∈ A. Using the definition of a being (λ, P )-amidst v and y, there is
a switching path Q from v to y avoiding P and having no edges labelled by
a. In addition if a is a vertex of D, then a ∈ Q \ {v}. We also have a 6∈ P
since a is (λ, P )-amidst v and y. Since Q avoids P , Lemma 4.2 implies that
P + Q is a switching path from u to y. Since neither P nor Q had edges
labelled by a, P + Q also has no edges labelled by a. In addition, if a is a
vertex, then P + Q passes through a and a 6= u (since a 6∈ P .) Therefore
P +Q witnesses a being amidst u and y as required.

Notice that every x ∈ X0 \ P is (λ, P )-amidst v and v (witnessed by
the single-vertex path v.) By Claim 4.33 applied with A = X0 \ P we have
|N+

X0\P (y)| ≥ εn− |P |. By Lemma 4.12, n ≥ N0, and P ≤ 3dλmax we have

|C| ≥ |N+
X0

(v)| − δn− γλ−3n ≥ εn− |P | − δn− γλ−3n ≥ εn/2. (5)
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Apply Lemma 4.26 to C and v to assign sets CS ⊆ C and ZS ⊆ (X0 ∪
CS)× CS satisfying all the conclusions of Lemma 4.26 to every set of labels
S with |S| ≤ kλ − 3dλ. For z ∈ V (D) and S a set of labels, let

ES(z) = {(x, y) ∈ L+(D) ∩ ZS with yz present and labelled by x}.

Since the labelling onD is out-proper, we have that ES(z)∩ES(z′) = ∅ for any
S and z 6= z′. Also notice that for sets S and S ′ we have ES(z)∩L+(D)∩ZS′ ⊆
ES′(z). We now define the set R

R = {z ∈ V (D) : |EP (z)| ≥ δ|CP |}.

First we show that v (λ+ 1)-reaches R.

Claim 4.34. v (λ+ 1)-reaches R.

Proof. Let S be a set of at most kλ+1 labels. Notice that |S ∪ P | ≤ kλ+1 +
3dλmax ≤ kλ − 3dλ. Let RS = {z ∈ R : ES∪P (z) 6= ∅}.

We claim that for every z ∈ RS\(S∪P ), there is a length≤ dλ+1 switching
path Pv,z from v to z avoiding S. Notice that for every z ∈ RS \ (S ∪ P ),
we have ES∪P (z) 6= ∅, and so by the definition of ES∪P (z), there is a pair
(x, y) ∈ L+(D) ∩ ZS∪P with yz present and labelled by x. Since (x, y) ∈
ZS∪P , by part (i) of Lemma 4.26 we have x (λ, S ∪ P )-amidst v and y. By
Lemma 4.25 applied with S ′ = S ∪ P , there is a switching path from v to z
avoiding S ∪ P of length ≤ 2dλ + 1 ≤ dλ+1.

To prove the claim it is sufficient to show that |R\(RS \(S∪P ))| ≤ ∆λ+1.
We will do this by showing |R \RS|+ |S ∪ P | ≤ ∆λ+1. We have

δ|CP ||R \RS| ≤
∑

z∈R\RS

|EP (z)|

=

∣∣∣∣∣∣
⋃

z∈R\RS

EP (z)

∣∣∣∣∣∣
≤ |(L+(D) ∩ ZP ) \ (L+(D) ∩ ZS∪P )|
≤ 6∆λn.

The first inequality comes from the definition of R. The equality comes from
EP (z) ∩ EP (z′) = ∅ for z 6= z′. For the second inequality first recall that
EP ⊆ L+(D) ∩ ZP . Then notice that for z ∈ R \ RS we have ES∪P (z) = ∅
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and hence EP (z) ∩ L+(D) ∩ ZS∪P ⊆ ES∪P (z) = ∅. This shows EP (z) ⊆
(L+(D) ∩ ZP ) \ (L+(D) ∩ ZS∪P ) for z ∈ R \ RS which implies the second
inequality. The third inequality comes from part (iii) of Lemma 4.26 and
|S ∪ P | ≤ kλ − 3dλ.

Rearranging and using |S ∪ P | ≤ kλ we obtain |R \ RS| + |S ∪ P | ≤
6∆λn/δ|CP |+ kλ. From (5) and Lemma 4.26 (ii) we have |CP | ≥ |C| − δn ≥
εn/3. Combining these gives |R \ RS| + |S ∪ P | ≤ 18∆λ/δε + kλ ≤ ∆λ+1 as
required.

The following claim lets us lower bound |L+(D) ∩ ZP | in terms of |ZP |.

Claim 4.35. |L+(D) ∩ ZP | ≥ |ZP | − |X0||CP |+ εn|CP |.

Proof. For every y ∈ CP , define

AP (y) = {x ∈ X0 ∪ CP : (x, y) ∈ ZP},
ALP (y) = {x ∈ X0 ∪ CP : (x, y) ∈ L+(D) ∩ ZP}.

From the definition of L+(D) we have ALP (y) = {x ∈ AP (y) : |N+
{x}(y)| =

1}. Notice that we have ZP =
⋃
y∈CP AP (y) × {y} and L+(D) ∩ ZP =⋃

y∈CP A
L
P (y)× {y}. The following string of equalities holds.

|L+(D) ∩ ZP | =
∑
y∈CP

|ALP (y)| =
∑
y∈CP

∣∣N+
ALP (y)

(y)
∣∣ =

∑
y∈CP

∣∣N+
AP (y)(y)

∣∣. (6)

The first equality comes from L+(D) ∩ ZP =
⋃
y∈CP A

L
P (y) × {y}. The

second equality holds since
∣∣N+
{x}(y)

∣∣ = 1 for x ∈ ALP (y) which implies∣∣N+
ALP (y)

(y)
∣∣ = |ALP (y)|. The third equality holds because

∣∣N+
AP (y)(y)

∣∣ =∣∣N+
ALP (y)

(y)
∣∣ +
∣∣N+

AP \ALP (y)
(y)
∣∣ and also

∣∣N+
AP \ALP (y)

(y)
∣∣ = 0 which comes from

“ALP (y) = {x ∈ AP (y) : |N+
{x}(y)| = 1}”.

By Lemma 4.26 (i), for every x ∈ AP (y) we have x (λ, P )-amidst v and

y. We can use Claim 4.33 to bound
∑

y∈CP

∣∣∣N+
AP (y)(y)

∣∣∣.∑
y∈CP

∣∣∣N+
AP (y)(y)

∣∣∣ ≥ ∑
y∈CP

(|AP (y)|− |X0|+ εn) = |ZP |− |X0||CP |+ εn|CP | (7)

The first inequality comes from Claim 4.33. The equality comes from ZP =⋃
y∈CP AP (y)× {y}. The claim follows from (6) and (7).
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Now we show that R is large.

Claim 4.36. |R| ≥ |C|+ (ε− 7δ)n.

Proof. Since D doesn’t have repeated edges, for any z ∈ V (D) and y ∈ CP ,
there can be at most one label x for which (x, y) ∈ EP (z). In particular this
implies that for all z ∈ V (D) we have |EP (z)| ≤ |CP |. For z 6∈ R we have
|EP (z)| ≤ δ|CP |. These imply

(n− |R|)δ|CP |+ |R||CP | ≥
∑

z∈V (D)

|EP (z)| = |L+(D) ∩ ZP |. (8)

To see the equality, notice that by the definition of EP (z) both sides equal∣∣∣⋃z∈V (D)EP (z)
∣∣∣. Combining Claim 4.35 with part (ii) of Lemma 4.26 we get

|L+(D) ∩ ZP | ≥ |ZP | − |X0||CP |+ εn|CP | ≥ |CP |2 + εn|CP | − 4δn|CP |. (9)

Combining (8) and (9) and rearranging implies the claim.

|R| ≥
|CP |2 + εn|CP | − 5δn|CP |

|CP | − δ|CP |
≥ |CP |+ εn− 5δn. ≥ |C|+ εn− 7δn.

The last inequality is from Lemma 4.26 (ii).

Claims 4.34 and 4.36 prove the lemma.

4.4. Proofs of Theorems 1.3 and 4.1

In this section we prove the theorems of this paper.

Proof of Theorem 4.1. Suppose that there is a vertex u for which the theorem
doesn’t hold i.e. that for every vertex v and set of labels A amidst u and
v we have |N+

A (v)| ≥ |A| − |X0| + εn. Apply Lemma 4.22 to u in order
to obtain numbers λ1, . . . , λ4δ−1 , components C1, . . . , C4δ−1 , and a path P
passing through all of them. For each i, let vi be a vertex in P ∩ Ci.

Using Lemma 4.12 we can show that all the components Ci are large.

Claim 4.37. |Ci| ≥ εn/2 for i = 1, . . . , 4δ−1.
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Proof. Fix i ≤ 4δ−1. Let P ′ be the subpath of P ending with vi and A =
X0 \ P ′. Notice that P ′ witnesses every label in A being amidst u and vi.
Since we are assuming that the theorem doesn’t hold we obtain |N+

A (vi)| ≥
|A| − |X0| + εn ≥ εn− |P ′| ≥ εn− 3dλmax (using the fact that P has length
≤ dλmax/2 in Lemma 4.22.) Since N+

A (vi) ⊆ N+
X0

(vi), n ≥ N0, and λi ≤ λmax,
Lemma 4.12 implies |Ci| ≥ |N+

A (vi)|−δn−γλi−3n ≥ εn−3dλmax−δn−γλi−3n ≥
εn/2.

Using Lemma 4.32, we can show that each Ci is much bigger than the
previous one.

Claim 4.38. |Ci+1| ≥ |Ci|+ εn/2 for i = 1, . . . , 4δ−1

Proof. Recall that from Lemma 4.22 we have |Ci \ Ci+1| ≤ δn for all i.
Combining this with Claim 4.37 we get |Ci ∩ Ci+1| = |Ci| − |Ci \ Ci+1| ≥
εn/2−δn ≥ εn/3. For each i, letRvi be a set from the definition λi-component
which is λi-reached by vi. Using |Ci 4 Rvi | ≤ δn and |Ci ∩ Ci+1| ≥ εn/3 we
get |Rvi ∩ Ci ∩ Ci+1| ≥ |Ci ∩ Ci+1| − |Ci \ Rvi | ≥ εn/3 − δn ≥ ∆λi + 1.
From the monotonicity of reaching we have that vi λi-reaches Rvi∩Ci∩Ci+1.
Using |P | ≤ 3dλmax/2 ≤ kλi and |Rvi ∩ Ci ∩ Ci+1| ≥ ∆λi + 1 this implies
that there is a length ≤ dλi switching path Q avoiding P from vi to a vertex
v ∈ Rvi ∩Ci∩Ci+1. Let P ′ be the subpath of P from u to vi. By Lemma 4.2,
P ′ +Q is a length ≤ dλmax switching path from u to v.

Notice that all the conditions of Lemma 4.32 hold with C = Ci, λ = λi,
u = u, v = v, and P = P ′ + Q. In addition, (i) cannot hold since we are
assuming that u is a vertex for which the theorem is false. Therefore part (ii)
of Lemma 4.32 occurs, i.e. we obtain a set R which is (λi+1)-reached by v and
has |R| ≥ |Ci|+(ε−7δ)n. Since v is in the (λi+1)-component Ci+1, we have a
set Rv with |Rv4Ci+1| ≤ δn such that Rv is (λi+1−3)-bypassed by v. From
Lemma 4.22 we have λi+1 ≤ λi+1−3. Since v (λi+1)-reaches R, (λi+1−3)-
bypasses Rv, and λi + 1 ≤ λi+1 − 3 we get |R \ Rv| = |R ∩ Rv| ≤ γ(λi+1−3)n
(using the monotonicity of reaching.) Combining this with |Rv4Ci+1| ≤ δn,
|R| ≥ |Ci|+ (ε− 7δ)n, and n ≥ N0 we get

|Ci+1| ≥ |Rv| − |Rv \ Ci+1| ≥ |R| − |R \Rv| − |Rv 4 Ci+1|
≥ |Ci|+ (ε− 7δ)n− γ(λi+1−3)n− δn ≥ |Ci|+ εn/2.
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Iterating |Ci+1| ≥ |Ci|+ εn/2 for i = 1, . . . , 4δ−1 gives |C4δ−1 | ≥ 2δ−1εn >
n which is a contradiction to C4δ−1 ⊆ V (D).

Using Theorem 4.1 and Lemma 3.7 it is easy to prove our approximate
version of Conjecture 1.2.

Proof of Theorem 1.3. Let N0 = N0(0.9ε) be the constant from Theorem 4.1,
and let G be a properly coloured bipartite multigraph with n ≥ N0 colours
having ≥ (1 + ε)n edges of each colour. Let M be a maximum rainbow
matching in G. Let X and Y be the parts of the bipartition of G and X0 =
X \ V (M). Suppose for the sake of contradiction that M misses a colour c∗.
Let DG,M be the labelled directed graph from Definition 3.1 corresponding to
M . By Lemma 3.2, DG,M is out-properly labelled and simple. By Lemma 3.7
we have that for any vertex v ∈ V (DG,M) and any set of labels A amidst c∗

and v we have |N+
A (v)| ≥ |A| − |X0| + εn − 1 ≥ |A| − |X0| + 0.9εn. This

contradicts Theorem 4.1 applied with ε′ = 0.9ε.

5. Concluding remarks

Here we make some remarks about the proof in this paper and directions
for further research.

Improving the bound in Theorem 1.3

In this paper we proved an approximate version of the Aharoni-Berger
Conjecture. Naturally, the main direction for further research is to improve
the dependency of N0 on ε in Theorem 1.3, and eventually prove the full
conjecture. The dependency which follows from our proof is extremely bad—

for ε > 0, we have N0 = twr
(

2 · 4ε−9
)

. This dependency can surely be

significantly improved by tweaking the proof in various ways. The author
believes that getting a polynomial error term is out of reach of the methods
in this paper.

Problem 5.1. For some α < 1 prove the following. Let G be a properly
edge-coloured bipartite multigraph with n colours and at least n+nα edges of
each colour. Then G has a rainbow matching using every colour.

Of particular interest would be to solve the above problem for some α <
1/2. This is because there are some natural variants of the Aharoni-Berger
Conjecture, where n1/2 is the best currently known bound on the error term.
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One of these is the version of the Aharoni-Berger Conjecture where not every
colour needs to be used in the rainbow matching. Specifically it is know that
in every properly edge-coloured bipartite multigraph with n colours and at
least n edges of each colour, there is a rainbow matching of size n−

√
n (see

[13, 14].) Also recall that Haggkvist and Johansson proved an approximate
version of the Aharoni-Berger Conjecture when when the colour classes in G
are all disjoint perfect matchings. In their paper [11] they say that “it will
be clear from the proof that in order to reach ε ≤ n−1/2 some new ideas must
be found, if indeed the theorem is valid in this range.” This suggests that√
n is a natural barrier for their techniques as well.

Finally it would be extremely interesting to show that every properly n-
edge-coloured bipartite multigraph with n + o(log2 n) edges of each colour
has a rainbow matching using every colour. This would improve the best
known bound on the Brualdi-Stein Conjecture [15].

Following this paper’s announcement, Gao, Ramadurai, Wanless, and
Wormald [16] solved Problem 5.1 when an additional restriction is placed on
the multigraph — that the multiplicity of each edge is at most

√
n/ log2 n.

Together with the Haggkvist-Johanson approach [11], and the author’s first
approach [8], this gives three different approaches which can prove an asymp-
totic version of the Aharoni-Berger Conjecture when the underlying graph
is simple. However, when the underlying graph is a general multigraph,
then the approach in this paper remains the only known way to prove the
Aharoni-Berger Conjecture asymptotically.

Improving the bound in Theorem 4.1

In this paper and [8] we introduced a directed graph based approach to
the Aharoni-Berger Conjecture. It would be interesting to know how far this
approach can be pushed. A specific open problem is to find out how small
N0 in Theorem 4.1 can be. Perhaps with some completely different proof
technique, Theorem 4.1 can be proved with much better bounds? Of partic-
ular interest is to find out whether there are serious barriers to this approach
proving the full Aharoni-Berger Conjecture. For example—for every C ∈ N,
are there labelled directed graphs such that for all u, v ∈ V (D) and set of
labels A amidst u and v we have |N+

A (v)| ≥ |A| − |X0|+ C?”

Non-bipartite graphs

The problem dealt with in this paper can be asked for non-bipartite
graphs as well i.e. what is the smallest f(n) so that given n matchings of size
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f(n) in a (not necessarily bipartite) graph G, there is a rainbow matching
using every colour. The following conjecture about this appears in [16].

Conjecture 5.2 ([16]). Let G be a properly edge-coloured bipartite multigraph
with n colours having at least n+2 edges of each colour. Then G has a rainbow
matching using every colour.

The motivation for asking for n+2 edges of each colour (rather than n+1
like in Conjecture 1.2) is that in the non-bipartite case there is an example
of graph with n+1 edges of each colour and no rainbow matching using each
colour. This example is to take two vertex-disjoint copies of K4 and properly
edge-colour it using 3 colours. This graph has 4 edges of each colour, but it
is easy to check that it has no rainbow matching of size 3.

Some progress has been made on Conjecture 5.2 since this paper has been
announced. Keevash and Yepremyan [17] showed that if the multiplicities are
≤ o(n) and each colour appears at least (1 + o(1))n times, then there is a
rainbow matching using n − O(1) colours. Gao, Ramadurai, Wanless, and
Wormald [16] proved that if the multiplicities are ≤

√
n/ log2 n and each

colour appears at least (1 + o(1))n times, then there is a rainbow matching
using every colour. When restricted to bipartite graphs, both of these results
are qualitatively weaker than the one in this paper (since Theorem 1.3 places
no restriction on the multiplicities).

It is natural to ask whether the methods in this paper can prove an
approximate version Conjecture 5.2 without any restriction on the multi-
plicities. While the author isn’t aware of any inherent barriers preventing a
suitable generalization from existing, it certainly is no easy task to find one.
Indeed the construction of the auxiliary directed graph DG,M relied heavily
on the graph G being bipartite, and it is not clear what natural auxiliary
directed graph could be useful in the non-bipartite case.

Different approaches based on directed graphs

Theorem 1.3 was proved by considering a directed graph DG,M corre-
sponding to G and studying paths called “switching paths” in DG,M . Nei-
ther the definition of DG,M nor the notion of “switching path” which we
used are canonical. There are variations of these definitions which could be
used to prove the same theorems. For example, instead of the directed graph
DG,M perhaps one could consider an alternative definition where edges go-
ing through Y0 in G somehow corresponded to edges in DG,M . Instead of
switching paths, one can use the following.
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Definition 5.3 (Weakly switching path). A path P = (p0, . . . , pd) in an
edge-labelled, directed graph D is a weakly switching path if the following
hold.

• P is rainbow i.e. the edges of P have different labels.

• If pipi+1 is labelled by a vertex v ∈ V (D), then v = pj for some 1 ≤
j ≤ d.

The difference between “weakly switching path” and “switching path” is
that for weakly switching paths if pipi+1 is labelled by v ∈ V (D) then we only
ask for v to be a non-starting vertex of P (whereas for “switching path”, we
wanted v to precede pipi+1 as well.) It is not hard to check that everything
in Section 4 stays true if we replace “switching path” by “weakly switching
path”. Also a “weakly switching path” version of Theorem 4.1 follows from
the version of Theorem 4.1 which we prove (just because switching paths are
a special case of weakly switching paths.)

The above discussion suggests that weakly switching paths are perhaps
a better notion to use in future research. The reason we didn’t use them in
this paper is a little bit technical. If we changed “switching path” to “weakly
switching path” in the definition of “v λ-reaching R”, then we would allow
paths P from v to x ∈ R which have an edge labelled by x. This causes a
problem in the proof of Lemma 4.26 since there we want to construct paths
from v through a vertex r with no edges labelled by x. However it is not
hard to overcome this issue and prove a version of Theorem 4.1 whilst working
directly with weakly switching paths (for example by suitably changing the
definition of “reaching”.)
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