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Abstract

The width of a delta-matroid is the difference in size between a maximal and minimal
feasible set. We give a Rough Structure Theorem for delta-matroids that admit a twist
of width one. We apply this theorem to give an excluded-minor characterisation of delta-
matroids that admit a twist of width at most one.
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1 Introduction, results and notation

Delta-matroids are a generalisation of matroids and were introduced by A. Bouchet in [2].
Delta-matroid theory can be thought of as generalising topological graph theory in the same
way that matroid theory can be thought of as generalising graph theory (see, e.g., [6]). In delta-
matroid theory, feasible sets fulfill the same role as bases do in matroid theory, but feasible
sets are in general not all of the same size. Notions of deletion, contraction and minors exist
for delta-matroids, so there is the possibility of characterising minor-closed families of delta-
matroids by their excluded minors. One of the most fundamental operations in delta-matroid
theory is the twist, and a basic integer invariant of a delta-matroid is its width. We show that
delta-matroids with twists of width at most k form a minor-closed family, of which we give an
excluded-minor characterization in the case k = 1. We also examine how the structure of a
delta-matroid determines the width of the delta-matroids that are in its equivalence class under
twists.

Formally, a delta-matroid D = (E,F) consists of a finite set E and a non-empty set F of
subsets of E that satisfies the Symmetric Exchange Axiom: for all X, Y ∈ F , if there is an
element u ∈ X4Y , then there is an element v ∈ X4Y such that X4{u, v} ∈ F . Here X4Y
denotes the symmetric difference of sets X and Y . Note that it may be the case that u = v in
the Symmetric Exchange Axiom. Elements of F are called feasible sets and E is the ground set.
We often use F(D) and E(D) to denote the set of feasible sets and the ground set, respectively,
of D. A matroid is a delta-matroid whose feasible sets are all of the same size. In this case the
feasible sets are called bases. This definition of a matroid is a straightforward reformulation of
the standard one in terms of bases.

In general a delta-matroid has feasible sets of different sizes. The width of a delta-matroid,
defined by Bouchet in [4] and denoted by w(D), is the difference between the sizes of its largest
and smallest feasible sets: w(D) := max

F∈F
|F | −min

F∈F
|F |.

Twists, introduced by Bouchet in [2], are one of the fundamental operations of delta-matroid
theory. Given a delta-matroid D = (E,F) and some subset A ⊆ E, the twist of D with respect
to A, denoted by D ∗ A, is the delta-matroid given by (E, {A4 F : F ∈ F}). (At times we
write D ∗ e for D ∗ {e}.) Note that the “empty twist” is D ∗ ∅ = D. The dual of D, written
D∗, is equal to D ∗ E. Moreover, in general, the twist can be thought of as a “partial dual”
operation on delta-matroids.

Forming the twist of a delta-matroid usually changes the sizes of its feasible sets and its
width. Here we are interested in the problem of recognising when a delta-matroid has a twist
of small width. Our results are a Rough Structure Theorem for delta-matroids that have a
twist of width one, and an excluded-minor characterisation of delta-matroids that have a twist
of width at most one.

To state the Rough Structure Theorem we need the following definitions. Let D = (E,F)
be a delta-matroid and let Fmin be the set of feasible sets of minimum size. Observe that
Dmin := (E,Fmin) is a matroid. To see this suppose that F1 and F2 are feasible sets of minimum
size, and e is an element of F1 − F2. Then e ∈ F14F2 and there exists f ∈ F14F2 such that
F14{e, f} ∈ F . Because F1 and F2 are feasible sets of minimum size, f ∈ F2 − F1. Thus the
feasible sets of minimum size obey the axioms defining the bases of a matroid. For a matroid M
with ground set E, a subset A of E is said to be a separator of M if A is a union of components
of M . Note that both ∅ and E are always separators. In terms of the matroid rank function,
where the rank r(X) of a set X ⊆ E is defined to be the size of the largest intersection of X
with a basis of M , the set A is a separator if and only if r(A) + r(E−A) = r(M). Throughout
the paper we use A for the complement E − A of A, and D|X denotes the restriction of D to
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X ⊆ E (see the beginning of Section 2 for its definition).
We now state the first of our two main results: a Rough Structure Theorem for delta-

matroids admitting a twist of width one.

Theorem 1. Let D = (E,F) be a delta-matroid. Then D has a twist of width one if and only
if there is some A ⊆ E such that

1. A is a separator of Dmin,

2. D|A is a matroid, and

3. D|A is of width one.

We actually prove a result that is stronger than Theorem 1. This stronger result appears
below as Theorem 7 and the present theorem follows immediately from it.

As an application of Theorem 1, we find an excluded-minor characterisation of the class of
delta-matroids that have a twist of width one as our second main result, Theorem 3. This class
of delta-matroids is shown to be minor closed in Proposition 9, and its set of excluded minors
comprises the delta-matroids in the following definition together with their twists.

Definition 2. Let D1 denote the delta-matroid on the elements a, b with feasible sets

F(D1) = {∅, {a}, {b}, {a, b}}.

Let D2 and D3 denote the delta-matroids on the elements a, b, c with feasible sets given by

F(D2) = {∅, {a}, {b}, {c}, {a, b, c}},
F(D3) = {∅, {a, b}, {b, c}, {a, c}}.

Throughout this paper D1, D2 and D3 refer exclusively to these delta-matroids. Let D[3] be the
set of all twists of these delta-matroids. Note that Di ∈ D[3] for all i ∈ {1, 2, 3} via the empty
twist.

Theorem 3. A delta-matroid has a twist of width at most one if and only if it has no minor
isomorphic to a member of D[3].

The proof of this theorem appears at the end of Section 3.
A delta-matroid is even if the difference in size between any two feasible sets is even. We

note that the excluded minors of twists of matroids (i.e., twists of width zero delta-matroids)
have been shown, to be ({a}, {∅, {a}}), D3, and D3 ∗ {a} by A. Duchamp [8, Corollary 4.3].
This result can be recovered from Theorem 3 by noting that a delta-matroid has a twist of
width zero if and only if it is both even and has a twist of width at most one, and that a
delta-matroid is even if and only if it has no minor isomorphic to ({a}, {∅, {a}}). The latter
result is easily recovered from Lemma 5.4 of [4].

2 The proof of the Rough Structure Theorem

We recall some standard matroid and delta-matroid terminology. Given a delta-matroid D =
(E,F) and element e ∈ E, if e is in every feasible set of D then we say that e is a coloop of D.
If e is in no feasible set of D, then we say that e is a loop of D. If e ∈ E is not a coloop, then
D delete e, denoted by D \ e, is the delta-matroid (E − e, {F : F ∈ F and F ⊆ E − e}). If
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e ∈ E is not a loop, then D contract e, denoted by D/e, is the delta-matroid (E − e, {F − e :
F ∈ F and e ∈ F}). If e ∈ E is a loop or coloop, then we define D/e = D \ e. Useful identities
that we use frequently are D/e = (D ∗ e) \ e and D \ e = (D ∗ e)/e. Note that deleting or
contracting an element from a delta-matroid corresponds to taking a subset of its feasible sets
and removing an element from either none of them or all of them, and consequently cannot
increase the width. If D′ is a delta-matroid obtained from D by a sequence of deletions and
contractions, then D′ is independent of the order of the deletions and contractions used in its
construction, so we can define D \ X/Y for disjoint subsets X and Y of E, as the result of
deleting each element in X and contracting each element in Y in some order. A minor of D
is any delta-matroid that is obtained from D by a (possibly empty) sequence of deletions and
contractions. The restriction of D to a subset A of E, written D|A, is equal to D \ A. A
delta-matroid is normal exactly when the empty set is among its feasible sets. Note that if D
is a normal delta-matroid then F is feasible in D|A if and only if F ⊆ A and F ∈ F(D).

The connectivity function λM of a matroid M on ground set E with rank function r is
defined on all subsets A of E by λM(A) = r(A) + r(A) − r(E). Recall that A is said to be a
separator of M if A is a (possibly empty) union of components of M . This happens if and only
if λM(A) = 0. Moreover, A is a separator if and only if A is a separator.

We will use Bouchet’s analogue of the rank function for delta-matroids from [3]. For a
delta-matroid D = (E,F), it is denoted by ρD or simply ρ when D is clear from the context.
Its value on a subset A of E is given by

ρ(A) := |E| −min{|A4 F | : F ∈ F}.
The following results give expressions for the width of a twist of a delta-matroid.

Lemma 4. Let D = (E,F) be a delta-matroid and A ⊆ E. Then the width, w(D ∗ A), of the
twist of D by A is given by w(D ∗ A) = ρ(A)− |E|+ ρ(A).

Proof. A largest feasible set in D ∗ A has size max{|F 4 A| : F ∈ F(D)}. Take F ′ ∈ F such
that |F ′4A| is maximal. Then |F ′4A| is minimal. As ρ(A) = |E| −min{|F 4A| : F ∈ F},
we see that ρ(A) = |E| − |F ′ 4 A| = |F ′ 4 A|. Hence a largest feasible set in D ∗ A has size
equal to ρ(A).

Next, the size of a smallest feasible set in D ∗ A is |E| minus the size of a largest feasible
set in (D ∗ A)∗ = D ∗ A. By an application of the above, it follows that the size of a smallest
feasible set in D ∗ A is |E| − ρ(A). Hence w(D ∗ A) = ρ(A)− |E|+ ρ(A).

Theorem 5. Let D = (E,F) be a delta-matroid and A ⊆ E. Then the width, w(D ∗A), of the
twist of D by A is given by

w(D ∗ A) = w(D|A) + w(D|A) + 2λDmin
(A).

Proof. We let r and n be the rank and nullity functions, respectively, of Dmin. From [6], we
know that w(D|A) = ρ(A)−r(A)−n(E)+n(A). As n(A) = |A|−r(A) and n(E) = |E|−r(E),

w(D|A) + w(D|A)

= ρ(A)− r(A)− |E|+ r(E) + |A| − r(A)

+ ρ(A)− r(A)− |E|+ r(E) + |A| − r(A)

= ρ(A)− |E|+ ρ(A)− 2(r(A) + r(A)− r(E))

= w(D ∗ A)− 2(λDmin
(A)),

where we have applied the previous lemma to obtain the last equality.
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The following two theorems are immediate consequences of Theorem 5. The Rough Struc-
ture Theorem, Theorem 1, follows immediately from the second of them.

Theorem 6 (Chun et al [7]). Let D = (E,F) be a delta-matroid and A ⊆ E. Then D ∗A is a
matroid if and only if A is a separator of Dmin, and both D|A and D|A are matroids.

Theorem 7. Let D = (E,F) be a delta-matroid and A ⊆ E. Then D ∗A has width one if and
only if A is a separator of Dmin, and one of D|A and D|A is a matroid and the other has width
one.

For convenience, we write down the following straightforward corollary. It provides the form
of the Rough Structure Theorem that we use to find excluded minors in the next section.

Corollary 8. Let D = (E,F) be a normal delta-matroid. Then the following hold.

1. D has a twist of width zero if and only if there exists A ⊆ E such that D|A and D|A are
both matroids.

2. D has a twist of width one if and only if there exists A ⊆ E such that D|A is a matroid
and D|A is of width one.

Proof. This is a straightforward consequence of the fact that if ∅ is feasible in D, then Dmin

is the matroid on E(D) where each element is a loop, thus every set A ⊆ E is a separator of
Dmin.

3 The proof of the excluded-minor characterisation

We begin this section by verifying that the class of delta-matroids in question is indeed minor-
closed.

Proposition 9. For each k ∈ N0, the set of delta-matroids with a twist of width at most k is
minor-closed.

Proof. Let D = (E,F) and suppose w(D ∗ A) ≤ k for some A ⊆ E. If E is empty then D
has width zero and has no minors other than itself, so assume not and let e ∈ E. If e /∈ A
then (D \ e) ∗ A = (D ∗ A) \ e, and (D/e) ∗ A = ((D ∗ e) \ e) ∗ A = ((D ∗ e) ∗ A) \ e =
((D ∗ A) ∗ e) \ e = (D ∗ A)/e. Similarly, if e ∈ A then e /∈ A − e, so using and extending the
previous argument, (D/e) ∗ (A − e) = (D ∗ (A − e))/e = ((D ∗ A) ∗ e)/e = (D ∗ A) \ e, and
(D \e)∗ (A−e) = (D ∗ (A−e))\e = ((D ∗A)∗e)\e = (D ∗A)/e. In each case we see that D/e
and D \ e have a twist equal to either (D ∗A)/e or (D ∗A) \ e. Since deletion and contraction
never increase width it follows that D/e and D \ e have twists of width at most w(D ∗A) ≤ k.
The result follows.

Lemma 10. Let D = (E,F) be a delta-matroid and A ⊆ E. Then

{H : H is a minor of D ∗ A} = {J ∗ (A ∩ E(J)) : J is a minor of D}.

Proof. In the proof of Proposition 9 it was shown that if e /∈ A then (D ∗ A)/e = (D/e) ∗ A
and (D ∗ A) \ e = (D \ e) ∗ A, whereas if e ∈ A then (D ∗ A) \ e = (D/e) ∗ (A − e) and
(D ∗ A)/e = (D \ e) ∗ (A− e). The result follows immediately from this.
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Before stating the next lemma we define the delta-matroids D4 and D5 on elements a, b, c
with feasible sets given by

F(D4) = {∅, {a, b}, {b, c}, {a, c}, {a, b, c}},
F(D5) = {∅, {a}, {a, b}, {b, c}, {a, c}}.

Both are twists of D2.

Lemma 11. Let D be a normal delta-matroid. Then D has a twist of width at most 1, or
contains a minor isomorphic to one of D1, . . . , D5.

Proof. For any normal delta-matroid D, set

L := {x ∈ E(D) : {x} ∈ F(D)} and L = E(D)− L.

(Technically we should record the fact that L depends upon D in the notation, however we
avoid doing this for notational simplicity. This should cause no confusion.) Note that L may be
empty. Construct a (simple) graph GD as follows. Take one vertex vx for each element x ∈ L,
and add one other vertex vL. The edges of GD arise from certain two-element feasible sets of
D. Add an edge vxvy to GD for each pair x, y ∈ L with {x, y} ∈ F(D); add an edge vxvL to
GD if {x, z} ∈ F(D) for some z ∈ L.

We consider two cases: when GD is bipartite, and when it is not. We will show that if GD

is bipartite then D must have a twist of width at most one or a minor isomorphic to D1 or D2;
if GD is not bipartite then it must have a minor isomorphic to D1, D3, D4, or D5.

Case 1. Suppose that GD is bipartite. Fix a 2-colouring of GD. Let A be the set of elements in
E(D) that correspond to the vertices in the colour class containing vL, except vL itself, together
with the elements in L, and let A ⊆ E(D) be the set of elements corresponding to the vertices
in the colour class not containing vL.

We start by showing
D|A ∼= U0,|A|, (1)

where U0,|A| denotes the uniform matroid with rank zero and |A| elements.

To see why (1) holds, note that F(D|A) = {F : F ⊆ A and F ∈ F(D)}. Since the elements
in A correspond to vertices in L, no feasible sets of D|A have size one. Furthermore, F(D|A)
cannot contain any sets of size two since, by the construction of GD, whenever {x, y} ∈ F(D)
the corresponding vertices vx and vy are in different colour classes. Since ∅ ∈ F(D|A), the
Symmetric Exchange Axiom ensures that there are no other feasible sets. (If F ∈ F(D|A) with
F 6= ∅, take x ∈ ∅4F . Then by the Symmetric Exchange Axiom ∅4{x, y} must be in F(D|A)
for some y, but there are no feasible sets of size one or two.) This completes the justification
of (1).

Next we examine the feasible sets in D|A. Trivially ∅ ∈ F(D|A). The set of feasible sets of
D|A of size one is {F ∈ F(D|A) : |F | = 1} = {F ∈ F(D) : |F | = 1} = {{x} : x ∈ L}.

If F(D|A) contains a set {x, y} of size two then x, y ∈ L as otherwise there would be an
edge vxvy in GD whose ends are in the same colour class. It follows in this case that D|{x, y}
is a minor of D isomorphic to D1.

Now assume that F(D|A) does not contain a set of size two. If F(D|A) has no sets of size
one then, arguing via the Symmetric Exchange Axiom as in the justification of (1), we have
D|A ∼= U0,|A|. Taken together with (1), this implies that A satisfies the conditions of the first
part of Corollary 8, so D has a twist of width zero.
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Suppose that F(D|A) does contain a set of size one. If it contains no sets of size greater
than one then D|A is of width one, and by combining this with (1), it follows from Corollary 8
that D has a twist of width one (D ∗ A and D ∗ A are such twists). On the other hand, if
F(D|A) does contain a set of size greater than one, then, as it does not contain a set of size
two, the Symmetric Exchange Axiom guarantees there is a set in F(D|A) of size exactly three.
(If not, let F be a minimum sized feasible set with |F | > 1. Then |F | > 3, and F \ {x, y} is
feasible and of size at least two for some x, y ∈ ∅4F contradicting the minimality of |F |.) Let
{x, y, z} ∈ F(D|A). Then after possibly relabelling its elements, the collection of feasible sets
of D|{x, y, z} is one of

{∅, {x}, {y}, {z}, {x, y, z}}, {∅, {x}, {y}, {x, y, z}}, {∅, {x}, {x, y, z}}.

Only the first of the three cases is possible as the Symmetric Exchange Axiom fails for the
other two showing that neither is the collection of feasible sets of a delta-matroid. In fact, the
second and third set systems are isomorphic to T ∗2 and T ∗1 , respectively, which Bonin, Chun,
and Noble [1] showed to be among the excluded minors for the class of delta-matroids. Hence,
restricting D to {x, y, z} results in a minor isomorphic to D2.

Thus we have shown that if GD is bipartite then D has a twist of width at most one or
contains a minor isomorphic to D1 or D2. This completes the proof of Case 1.

Case 2. Suppose that GD is non-bipartite. We will show that D contains a minor isomorphic
to one of D1, D3, D4 or D5 by induction on the length of a shortest odd cycle in GD.

For the base of the induction suppose that GD has an odd cycle C of length three. There
are two sub-cases, when vL is not in C and when it is. Note that the former sub-case includes
the situation where L = ∅.
Sub-case 2.1. Suppose that vL is not in C. Let x, y, z ∈ E(D) be the elements corresponding
to the three vertices of C. We have x, y, z ∈ L, so {x}, {y}, {z} /∈ F(D). From the three edges
of C we have {x, y}, {y, z}, {z, x} ∈ F(D). It follows that D|{x, y, z} is isomorphic to either
D3 or D4 giving the required minor.

Sub-case 2.2. Suppose that vL is in C. Let vx, vy, vL be the vertices in C. The edges of C
give that {x, y} ∈ F(D), and since x, y ∈ L we have {x}, {y} /∈ F(D). We also know that
there are elements α, β ∈ L such that {α}, {β}, {x, α}, {y, β} ∈ F(D), where possibly α = β.

If α = β then D|{x, y, α} must have feasible sets

{∅, {α}, {x, α}, {y, α}, {x, y}} or {∅, {α}, {x, α}, {y, α}, {x, y}, {α, x, y}}. (2)

The first case gives a minor of D isomorphic to D5; in the second case, (D|{x, y, α})/α is a
minor of D isomorphic to D1.

If α 6= β then the feasible sets of D|{x, y, α, β} of size zero or one are exactly ∅, {α}, and
{β}. From GD, the feasible sets of size two include {x, α}, {y, β}, {x, y}. If {y, α} is also feasible
then D|{x, y, α} is isomorphic to one of the delta-matroids arising from (2), so D has a minor
isomorphic to D1 or D5. The case when {x, β} is feasible is similar. If {α, β} is feasible then
D|{α, β} is isomorphic to D1.

The case that remains is when the feasible sets of D|{x, y, α, β} of size at most two are
exactly

∅, {α}, {β}, {x, α}, {y, β}, {x, y}.
By applying the Symmetric Exchange Axiom to each of the triples

({α}, {x, y}, y), ({β}, {x, y}, x), ({β}, {x, α}, x) and ({α}, {y, β}, y),
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where the three components of the triple play the roles of F1, F2 and u in the Symmetric
Exchange Axiom, one can show that each of the three element sets,

{α, x, y}, {β, x, y}, {α, β, x}, {α, β, y},

is feasible in D|{x, y, α, β}. Finally, {α, β, x, y} may or may not be feasible.
If {α, β, x, y} is feasible then (D|{x, y, α, β})/{x, y} is isomorphic to D1; if {α, β, x, y} is

not feasible then (D|{x, y, α, β})/{α} is isomorphic to D5.
This completes the base of the induction.
For the inductive hypothesis, we assume that, for some odd n > 3, if D′ is a normal delta-

matroid and GD′ has an odd cycle of length less than n, then D′ has a minor isomorphic to
D1, D3, D4, or D5.

Suppose that a shortest odd cycle C of GD has length n. Again there are two sub-cases:
when vL is not in C and when it is.

Sub-case 2.3. Suppose that vL is not in C. Let C = vx1vx2 . . . vxnvx1 . Since each xi ∈ L and
C is the shortest odd cycle in GD,

∅, {x1, x2}, {x2, x3}, . . . , {xn, x1} (3)

is a complete list of the feasible sets of size at most two in D|{x1, . . . , xn}.
Next, we show

{xi, xj, xk} /∈ F(D|{x1, . . . , xn}), for any distinct 1 ≤ i, j, k ≤ n. (4)

To see why (4) holds, first note that, since n > 3, every set of three distinct vertices in the
cycle includes a non-adjacent pair. If {xi, xj, xk} were feasible in D|{x1, . . . , xn}, then, without
loss of generality, {xj, xk} /∈ F(D|{x1, . . . , xn}). As xi ∈ {xi, xj, xk} 4 ∅, an application
of the Symmetric Exchange Axiom would imply that {xi, xj, xk} 4 {xi, z} is feasible for some
z ∈ {xi, xj, xk}. Thus {xj, xk}, {xj}, or {xk} would be feasible, a contradiction to (3). Thus (4)
holds.

Next we show that, taking indices modulo n,

{xi, xi+1, xj, xj+1} ∈ F(D|{x1, . . . , xn}), (5)

for any i and j such that 1 ≤ i, j ≤ n and i, i + 1, j, j + 1 are pairwise distinct. By (3),
{xi, xi+1} and {xj, xj+1} are feasible. As xj is in their symmetric difference, by the Symmet-
ric Exchange Axiom, {xi, xi+1} 4 {xj, y} is feasible for some y ∈ {xi, xi+1, xj, xj+1}. Thus
{xi, xi+1, xj}, {xi, xj}, {xi+1, xj} or {xi, xi+1, xj, xj+1} is feasible. First suppose that neither
xi+1 and xj nor xj+1 and xi are adjacent in C. By (3) and (4), {xi, xi+1, xj, xj+1} is feasible.
Alternatively, if xi+1 and xj are adjacent then the Symmetric Exchange Axiom implies that
{xi, xi+1} 4 {xi+3, z} is feasible for some z ∈ {xi, xi+1, xi+2, xi+3}. Again, (3) and (4) imply
that {xi, xi+1, xi+2, xi+3} must be feasible. The other case is identical. This completes the
justification of (5).

Combining (3)–(5) gives that all of

∅, {x1, x2}, {x2, x3}, . . . , {xn−2, x1},

but none of {x1}, . . . , {xn−2}, are feasible in (D|{x1, . . . , xn})/{xn−1, xn}. Consequently the
graph G(D|{x1,...,xn})/{xn−1,xn} has a shorter odd cycle than GD. By the inductive hypothesis,
(D|{x1, . . . , xn})/{xn−1, xn} and hence D has a minor isomorphic to one of D1, D3, D4 or D5.
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Sub-case 2.4. Suppose that vL is in C. Let C = vLvx2vx3 . . . vxnvL. The edges of the
cycle give that, for each 2 ≤ i ≤ n − 1, {xi, xi+1} ∈ F(D). Also, for 2 ≤ i ≤ n, since
xi ∈ L we have {xi} /∈ F(D). We also know that there are elements α, β ∈ L such that
{α}, {β}, {α, x2}, {β, xn} ∈ F(D) where possibly α = β. In the case where α 6= β, if {α, β} ∈
F(D), then D|{α, β} is isomorphic to D1, therefore we assume {α, β} /∈ F(D). The following
analysis covers both the case where α = β and the case where α 6= β.

Using that C is a shortest odd cycle, the feasible sets of D|{α, β, x2, . . . , xn} of size at most
two are exactly

∅, {α}, {β}, {α, x2}, {x2, x3}, {x3, x4}, . . . , {xn−1, xn}, {β, xn}. (6)

An argument similar to the justification of (4) gives that

{xi, xj, xk} /∈ F(D|{α, β, x2, . . . , xn}), for any distinct 2 ≤ i, j, k ≤ n. (7)

However
{α, xn−1, xn}, {β, xn−1, xn} ∈ F(D|{α, β, x2, . . . , xn}). (8)

To see this note that xn−1 ∈ {α} 4 {xn−1, xn}, so the Symmetric Exchange Axiom gives that
one of {α, xn−1}, {xn−1}, or {α, xn−1, xn} is feasible, and we know from (6) that the feasible
set must be the third option. That {β, xn−1, xn} is feasible follows from a similar argument.

We next show that for each 2 ≤ i < n− 2,

{α, x2, xn−1, xn}, {xi, xi+1, xn−1, xn}, {β, xn−2, xn−1, xn} ∈ F(D|{α, β, x2, . . . , xn}). (9)

For this, first consider x2 ∈ {xn−1, xn} 4 {α, x2}. The Symmetric Exchange Axiom implies
that {xn−1, xn} 4 {x2, z} is feasible for some z ∈ {α, x2, xn−1, xn}. By (6) and (7), z = α,
thus {α, x2, xn−1, xn} is feasible. Next, to show that {xi, xi+1, xn−1, xn} is feasible, we take
xi ∈ {xn−1, xn} 4 {xi, xi+1} and apply the Symmetric Exchange Axiom as above to see that
{xn−1, xn}4{xi, z} is feasible, where z must equal xi+1. Lastly, to show that {β, xn−2, xn−1, xn}
is feasible, we first show that {β, xn−2, xn} /∈ F(D|{α, β, x2, . . . , xn}). If {β, xn−2, xn} were
feasible, then since xn−2 ∈ ∅4{β, xn−2, xn}, the Symmetric Exchange Axiom would give {xn−2},
{β, xn−2} or {xn−2, xn} as feasible, a contradiction. Now showing that {β, xn−2, xn−1, xn} is
feasible comes from taking xn−2 ∈ {β, xn} 4 {xn−2, xn−1}. The Symmetric Exchange Axiom
gives that {β, xn} 4 {xn−2, z} is feasible for some z ∈ {β, xn−2, xn−1, xn}, of which z = xn−1 is
the only possibility.

From (6)–(9) it follows that all of ∅ , {α}, {β}, {α, x2}, {x2, x3}, . . ., {β, xn−2}, but none of
{x2}, . . ., {xn−2}, are feasible in D′ = (D|{α, x2, . . . , xn, β})/{xn−1, xn}. Hence the graph GD′

has a shorter odd cycle than GD. The inductive hypothesis gives that D′ and hence D has a
minor isomorphic to one of D1, D3, D4 or D5. This completes the proof of the sub-case, and
the lemma.

We now apply Lemma 11 to prove our excluded-minor characterisation of the family of
delta-matroids admitting a twist of width at most one.

Proof of Theorem 3. All twists of the delta-matroids D1, D2, D3 are of width at least two.
Since the set of delta-matroids with a twist of width at most one is minor-closed it follows that
no minor of a delta-matroid with a twist of width at most one is isomorphic to a member of
D[3]. This proves one direction of the theorem.

Conversely suppose that every twist of a delta-matroid D = (E,F) is of width at least two.
Let A ∈ F . Then D ∗A is a normal delta-matroid and in which every twist is of width at least
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two. By Lemma 11, D ∗ A has a minor isomorphic to one of D1, . . . , D5. Using the fact that
D4 and D5 are both twists of D2, it follows from Lemma 10 that D has a minor isomorphic to
a member of D[3].

Remark 12. In the introduction, we mentioned the very close connection between delta-matroids
and graphs in surfaces. Viewed as ribbon graphs, such graphs give rise to the minor-closed class
of ribbon graphic delta-matroids in much the same way as (abstract) graphs give rise to the
class of graphic matroids. For a full explanation see [6]. The width of a delta-matroid can be
viewed as the analogue of the genus (or more precisely the Euler genus) of an embedded graph,
while twisting is the analogue of S. Chmutov’s partial duality of [5]. Thus characterising delta-
matroids with a twist of width one is the analogue of characterising embedded graphs having a
partial dual embedded in the real projective plane. The topological graph theoretical analogues
of Theorems 1, 3 and 5 can be found in [9, 10]. In fact the ribbon graph results provide versions
of Theorems 1, 3, and 5 that hold for the class of ribbon graphic delta-matroids.

For a ribbon graphic version of Theorem 3, if D is ribbon graphic and does not admit a twist
of width at most one, then D = D(G) for some ribbon graph G that does not have a partial
dual of Euler genus at most one. By Theorem 1.1 of [10], it follows that one of the ribbon
graphs X1, X2, or X3 from Figure 1 of that paper must be a minor. By the compatibility of
ribbon graph and delta-matroid deletion and contraction described in [6], one of D(X1) = D1,
D(X2) = D3, or D(X3) = D3 ∗ a is a minor of D. The converse follows since the class is minor-
closed. It is not difficult to see that neither D2 nor any of its twists is ribbon-graphic, so they
do not appear as excluded minors for this class, but several definitions from [6] are required to
make the argument concise. Briefly, any ribbon-graphic delta-matroid with the same feasible
sets of size at most two as D2 must arise from a ribbon graph comprising a single vertex and
three pairwise interlaced non-orientable loops. In any such ribbon-graphic delta-matroid there
is no feasible set of size three. Thus D2 is not ribbon-graphic. As any twist of a ribbon-graphic
delta-matroid is ribbon-graphic [4, 6], it follows that no twist of D2 is ribbon-graphic.

Similar reasoning shows that Theorem 3.4 of [9] gives Theorem 5 for ribbon graphic delta-
matroids in the special case where λDmin

(A) = 0; and Theorem 4.3(2) of [9] results in Theorem 1
for ribbon graphic delta-matroids. Deducing these results uses the fact that A defines a bisep-
aration of G if and only if it is a separator of D(G) [6].
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